赞
踩
PYTHON Pandas批量读取csv文件到DATAFRAME
首先使用glob.glob获得文件路径。然后定义一个列表,读取文件后再使用concat合并读取到的数据。
#读取数据
import pandas as pd
import numpy as np
import glob,os
path=r'e:\tj\month\fx1806'
file=glob.glob(os.path.join(path, "zq*.xls"))
print(file)
dl= []
for f in file:
dl.append(pd.read_excel(f,header=[0,1],index_col=None))
df=pd.concat(dl)
下面看下Python使用pandas处理CSV文件的方法
Python中有许多方便的库可以用来进行数据处理,尤其是Numpy和Pandas,再搭配matplot画图专用模块,功能十分强大。
CSV(Comma-Separated Values)格式的文件是指以纯文本形式存储的表格数据,这意味着不能简单的使用Excel表格工具进行处理,而且Excel表格处理的数据量十分有限,而使用Pandas来处理数据量巨大的CSV文件就容易的多了。
我用到的是自己用其他硬件工具抓取得数据,硬件环境是在Linux平台上搭建的,当时数据是在运行脚本后直接输出在terminal里的,数据
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。