赞
踩
import numpy as np
class AHP:
“”"
相关信息的传入和准备
“”"
def __init__(self, array): ## 记录矩阵相关信息 self.array = array ## 记录矩阵大小 self.n = array.shape[0] # 初始化RI值,用于一致性检验 self.RI_list = [0, 0, 0.52, 0.89, 1.12, 1.26, 1.36, 1.41, 1.46, 1.49, 1.52, 1.54, 1.56, 1.58, 1.59] # 矩阵的特征值和特征向量 self.eig_val, self.eig_vector = np.linalg.eig(self.array) # 矩阵的最大特征值 self.max_eig_val = np.max(self.eig_val) # 矩阵最大特征值对应的特征向量 self.max_eig_vector = self.eig_vector[:, np.argmax(self.eig_val)].real # 矩阵的一致性指标CI self.CI_val = (self.max_eig_val - self.n) / (self.n - 1) # 矩阵的一致性比例CR self.CR_val = self.CI_val / (self.RI_list[self.n - 1]) """ 一致性判断 """ def test_consist(self): # 打印矩阵的一致性指标CI和一致性比例CR print("判断矩阵的CI值为:" + str(self.CI_val)) print("判断矩阵的CR值为:" + str(self.CR_val)) # 进行一致性检验判断 if self.n == 2: # 当只有两个子因素的情况 print("仅包含两个子因素,不存在一致性问题") else: if self.CR_val < 0.1: # CR值小于0.1,可以通过一致性检验 print("判断矩阵的CR值为" + str(self.CR_val) + ",通过一致性检验") return True else: # CR值大于0.1, 一致性检验不通过 print("判断矩阵的CR值为" + str(self.CR_val) + "未通过一致性检验") return False """ 算术平均法求权重 """ def cal_weight_by_arithmetic_method(self): # 求矩阵的每列的和 col_sum = np.sum(self.array, axis=0) # 将判断矩阵按照列归一化 array_normed = self.array / col_sum # 计算权重向量 array_weight = np.sum(array_normed, axis=1) / self.n # 打印权重向量 print("算术平均法计算得到的权重向量为:\n", array_weight) # 返回权重向量的值 return array_weight """ 几何平均法求权重 """ def cal_weight__by_geometric_method(self): # 求矩阵的每列的积 col_product = np.product(self.array, axis=0) # 将得到的积向量的每个分量进行开n次方 array_power = np.power(col_product, 1 / self.n) # 将列向量归一化 array_weight = array_power / np.sum(array_power) # 打印权重向量 print("几何平均法计算得到的权重向量为:\n", array_weight) # 返回权重向量的值 return array_weight """ 特征值法求权重 """ def cal_weight__by_eigenvalue_method(self): # 将矩阵最大特征值对应的特征向量进行归一化处理就得到了权重 array_weight = self.max_eig_vector / np.sum(self.max_eig_vector) # 打印权重向量 print("特征值法计算得到的权重向量为:\n", array_weight) # 返回权重向量的值 return array_weight
if name == “main”:
# 给出判断矩阵
b = np.array([[1, 1 / 3, 1 / 8], [3, 1, 1 / 3], [8, 3, 1]])
# 算术平均法求权重
weight1 = AHP(b).cal_weight_by_arithmetic_method()
# 几何平均法求权重
weight2 = AHP(b).cal_weight__by_geometric_method()
# 特征值法求权重
weight3 = AHP(b).cal_weight__by_eigenvalue_method()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。