赞
踩
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一,擅长处理图像特别是图像识别等相关机器学习问题。
卷积神经网络的基本结构大致包括:卷积层、激活函数、池化层、全连接层、输出层等。
卷积层(Convolutional layer),卷积神经网路中每层卷积层由若干卷积单元组成,每个卷积单元的参数都是通过反向传播算法优化得到的。卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网络能从低级特征中迭代提取更复杂的特征。
激活函数,即线性整流层(Rectified Linear Units layer, ReLU layer),这一层神经的活性化函数(Activation function)使用线性整流(Rectified Linear Units, ReLU)。
池化层(Pooling layer),通常在卷积层之后会得到维度很大的特征,将特征切成几个区域,取其最大值或平均值,得到新的、维度较小的特征。
全连接层( Fully-Connected layer), 把所有局部特征结合变成全局特征,用来计算最后每一类的得分。
二维卷积运算:给定二维的图像I作为输入,二维卷积核K,卷积运算可表示为 :
卷积核需要进行上下翻转和左右反转
卷积实际上就是互相关
普通神经网络把输入层和隐含层进行“全连接(Full Connected)”的设计。从计算的角度来讲,相对较小的图像从整幅图像中计算特征是可行的。但是,如果是更大的图像,要通过这种全联通网络的这种方法来学习整幅图像上的特征,从计算角度而言,将变得非常耗时。
卷积层解决这类问题的一种简单方法是对隐含单元和输入单元间的连接加以限制:每个隐含单元仅仅只能连接输入单元的一部分。例如,每个隐含单元仅仅连接输入图像的一小片相邻区域。(对于不同于图像输入的输入形式,也会有一些特别的连接到单隐含层的输入信号“连接区域”选择方式。如音频作为一种信号输入方式,一个隐含单元所需要连接的输入单元的子集,可能仅仅是一段音频输入所对应的某个时间段上的信号。)
一个输出单元的大小有以下三个量控制:depth, stride 和 zero-padding
深度(depth) : 顾名思义,它控制输出单元的深度,也就是filter的个数,连接同一块区域的神经元个数。又名:depth column
步长(stride):它控制在同一深度的相邻两个隐含单元,与他们相连接的输入区域的距离。如果步长很小(比如 stride = 1)的话,相邻隐含单元的输入区域的重叠部分会很多; 步长很大则重叠区域变少。
卷积的模式:
数据填充,即补零(zero-padding) : 我们可以通过在输入单元周围补零来改变输入单元整体大小,从而控制输出单元的空间大小。如果我们有一个
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。