当前位置:   article > 正文

python炫酷烟花表白源代码,html代码烟花特效python_python炫酷代码

python炫酷代码

大家好,给大家分享一下python绘制烟花特定爆炸效果,很多人还不知道这一点。下面详细解释一下。现在让我们来看看!

本文实例为大家分享了python实现烟花小程序的具体代码,供大家参考,具体内容如下

'''

FIREWORKS SIMULATION WITH TKINTER

*self-containing code

*to run: simply type python simple.py in your console

*compatible with both Python 2 and Python 3

*Dependencies: tkinter, Pillow (only for background image)

*The design is based on high school physics, with some small twists only for aesthetics purpose

import tkinter as tk

#from tkinter import messagebox

#from tkinter import PhotoImage

from PIL import Image, ImageTk

from time import time, sleep

from random import choice, uniform, randint

from math import sin, cos, radians

# gravity, act as our constant g, you can experiment by changing it

GRAVITY = 0.05

# list of color, can choose randomly or use as a queue (FIFO)

colors = ['red', 'blue', 'yellow', 'white', 'green', 'orange', 'purple', 'seagreen','indigo', 'cornflowerblue']

Generic class for particles

particles are emitted almost randomly on the sky, forming a round of circle (a star) before falling and getting removed

from canvas

Attributes:

- id: identifier of a particular particle in a star

- x, y: x,y-coordinate of a star (point of explosion)

- vx, vy: speed of particle in x, y coordinate

- total: total number of particle in a star

- age: how long has the particle last on canvas

- color: self-explantory

- cv: canvas

- lifespan: how long a particle will last on canvas

class part:

def __init__(self, cv, idx, total, explosion_speed, x=0., y=0., vx = 0., vy = 0., size=2., color = 'red', lifespan = 2, **kwargs):

self.id = idx

self.x = x

self.y = y

self.initial_speed = explosion_speed

self.vx = vx

self.vy = vy

self.total = total

self.age = 0

self.color = color

self.cv = cv

self.cid = self.cv.create_oval(

x - size, y - size, x + size,

y + size, fill=self.color)

self.lifespan = lifespan

def update(self, dt):

self.age += dt

# particle expansions

if self.alive() and self.expand():

move_x = cos(radians(self.id*360/self.total))*self.initial_speed

move_y = sin(radians(self.id*360/self.total))*self.initial_speed

self.cv.move(self.cid, move_x, move_y)

self.vx = move_x/(float(dt)*1000)

# falling down in projectile motion

elif self.alive():

move_x = cos(radians(self.id*360/self.total))

# we technically don't need to update x, y because move will do the job

self.cv.move(self.cid, self.vx + move_x, self.vy+GRAVITY*dt)

self.vy += GRAVITY*dt

# remove article if it is over the lifespan

elif self.cid is not None:

cv.delete(self.cid)

self.cid = None

# define time frame for expansion

def expand (self):

return self.age <= 1.2

# check if particle is still alive in lifespan

def alive(self):

return self.age <= self.lifespan

Firework simulation loop:

Recursively call to repeatedly emit new fireworks on canvas

a list of list (list of stars, each of which is a list of particles)

is created and drawn on canvas at every call,

via update protocol inside each 'part' object

def simulate(cv):

t = time()

explode_points = []

wait_time = randint(10,100)

numb_explode = randint(6,10)

# create list of list of all particles in all simultaneous explosion

for point in range(numb_explode):

objects = []

x_cordi = randint(50,550)

y_cordi = randint(50, 150)

speed = uniform (0.5, 1.5)

size = uniform (0.5,3)

color = choice(colors)

explosion_speed = uniform(0.2, 1)

total_particles = randint(10,50)

for i in range(1,total_particles):

r = part(cv, idx = i, total = total_particles, explosion_speed = explosion_speed, x = x_cordi, y = y_cordi,

vx = speed, vy = speed, color=color, size = size, lifespan = uniform(0.6,1.75))

objects.append(r)

explode_points.append(objects)

total_time = .0

# keeps undate within a timeframe of 1.8 second

while total_time < 1.8:

sleep(0.01)

tnew = time()

t, dt = tnew, tnew - t

for point in explode_points:

for item in point:

item.update(dt)

cv.update()

total_time += dt

# recursive call to continue adding new explosion on canvas

root.after(wait_time, simulate, cv)

def close(*ignore):

"""Stops simulation loop and closes the window."""

global root

root.quit()

if __name__ == '__main__':

root = tk.Tk()

cv = tk.Canvas(root, height=600, width=600)

# use a nice background image

image = Image.open("./image1.jpg")#背景照片路径自行选择,可以选择酷炫一点的,看起来效果会#更好

photo = ImageTk.PhotoImage(image)

cv.create_image(0, 0, image=photo, anchor='nw')

cv.pack()

root.protocol("WM_DELETE_WINDOW", close)

root.after(100, simulate, cv)

root.mainloop()

注意:这里需要安装tkinter,安装过程:

step1:

>>> import _tkinter # with underscore, and lowercase 't'

step2:

>>> import Tkinter # no underscore, uppercase 'T' for versions prior to V3.0

>>> import tkinter # no underscore, lowercase 't' for V3.0 and later

step3:

>>> Tkinter._test() # note underscore in _test and uppercase 'T' for versions prior to V3.0

>>> tkinter._test() # note underscore in _test and lowercase 'T' for V3.0 and later

然后就可以运行了,在代码中有一个背景照片部分,路径可自行选择!我这里就不修改了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家Deepl降重

文章知识点与官方知识档案匹配,可进一步学习相关知识
Python入门技能树首页概览395271 人正在系统学习中
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/147887
推荐阅读
相关标签
  

闽ICP备14008679号