当前位置:   article > 正文

python多线程爬虫框架_threadcrawl是框架嘛

threadcrawl是框架嘛

最近仿照书上写了个多线程爬虫框架,在实现多进程的时候遇到了困难,不过打算开始学scrapy了也就暂时不管多进程的问题了

首先是缓存部分,在每次下载一个html的时候,首先会查询mongodb数据库中是否已经有该页面的缓存,如果没有,下载页面,如果有,获得缓存的页面

在mongodb中设置一个特殊索引用于删除超时的缓存(缓存默认保存30天),由于该类实现了 __getitem__和__setitem__方法,所以可以直接像操作字典一样操作这个对象

import pickle
import zlib
from datetime import datetime,timedelta
from pymongo import MongoClient
from bson.binary import Binary


class MongoCache:
    def __init__(self,client = None,expires = timedelta(days=30)):
        #如果没有传递MongoClient对象,创建一个默认对象
        if client is None:
            self.client = MongoClient("localhost",12345)
        #创建一个连接想数据库中缓存数据
        self.db = self.client.cache
        self.db.webpage.create_index("timestamp",expireAfterSeconds=expires.total_seconds())


    def __getitem__(self, url):
        '''
        从数据库中获得该url的值
        '''
        record = self.db.webpage.find_one({"_id":url})
        print(record)
        if record:
            return pickle.loads(zlib.decompress(record["result"]))
            #return record["result"]
        else:
            raise KeyError(url+"不存在")
    def __setitem__(self, url,result):
        '''
        将数据储存到数据库中
        '''
        record = {"result":Binary(zlib.compress(pickle.dumps(result))),
                  "timestamp":datetime.utcnow()}
        #record = {"result":result,"timestamp":datetime.utcnow()}
        self.db.webpage.update({"_id":url},{"$set":record},upsert=True)

然后是实现下载的类,该类首先查看缓存,如果缓存中已有html并且响应码正常,则直接从缓存中获取html,否则下载页面

Throttle类实现了下载之间的延时功能

import urllib.request
import time
import datetime
import re
import socket
import random
from DiskCache import DiskCache


DEFAULT_AGENT = "wswp"
DEFAULT_DELAY = 5
DEFAULT_RETRIES = 1
DEFAULT_TIMEOUT = 60


class Downloader:
    '''
    用于下载html的类,可以传入的参数有
    proxies;代理ip列表,会随机的在列表中抽取代理ip进行下载
    delay:下载同一域名的等待时间,默认一秒
    user_agent:主机名,默认python
    num_retries:下载失败重新下载次数
    timeout;下载超时时间
    cache:缓存方式
    '''
    def __init__(self,proxies=None,delay = DEFAULT_DELAY,user_agent = DEFAULT_AGENT,num_retries = DEFAULT_RETRIES,timeout = DEFAULT_TIMEOUT,opener = None,cache=None):
        #设置超时时间
        socket.setdefaulttimeout(timeout)
        self.throttle = Throttle(delay)
        self.user_agent = user_agent
        self.proxies = proxies
        self.num_retries = num_retries
        self.opener = opener
        self.cache = cache


    def   __call__(self,url):
        '''
        带有缓存功能的下载方法,通过类对象可以直接调用
        '''
        print(self.user_agent)
        print("开始下载"+url)
        result = None
        if self.cache:
            try:
                #从缓存中获取url对应的数据
                result = self.cache[url]
                print("测试代码4")
            except KeyError:
                #如果获得KeyError异常,跳过
                pass
            else:
                #如果是未成功下载的网页,重新下载
                if result["code"]:
                    if self.num_retries > 0 and 500<result["code"]<600:
                        result = None
        # 如果页面不存在,下载该页面
        if result is None:
            #延迟默时间
            self.throttle.wait(url)
            if self.proxies:
                #如果有代理IP,从代理IP列表中随机抽取一个代理IP
                proxy = random.choice(self.proxies)
            else:
                proxy = None
            #构造请求头
            headers = {"User-agent":self.user_agent}
            #下载页面
            result = self.download(url,headers,proxy = proxy,num_retries = self.num_retries)
            '''
            file = open("f:\\bilibili.html","wb")
            file.write(result["html"])
            file.close()
        '''
            if self.cache:
                #如果有缓存方式,缓存网页
                self.cache[url] = result
        print(url,"页面下载完成")
        return result["html"]




    def download(self,url,headers,proxy,num_retries,data=None):
        '''
        用于下载一个页面,返回页面和与之对应的状态码
        '''
        #构建请求
        request = urllib.request.Request(url,data,headers or {})
        request.add_header("Cookie","finger=7360d3c2; UM_distinctid=15c59703db998-0f42b4b61afaa1-5393662-100200-15c59703dbcc1d; pgv_pvi=653650944; fts=1496149148; sid=bgsv74pg; buvid3=56812A21-4322-4C70-BF18-E6D646EA78694004infoc; CNZZDATA2724999=cnzz_eid%3D214248390-1496147515-https%253A%252F%252Fwww.baidu.com%252F%26ntime%3D1496805293")
        request.add_header("Upgrade-Insecure-Requests","1")
        opener = self.opener or urllib.request.build_opener()
        if proxy:
            #如果有代理IP,使用代理IP
            opener = urllib.request.build_opener(urllib.request.ProxyHandler(proxy))
        try:
            #下载网页
            response = opener.open(request)
            print("code是",response.code)
            html = response.read().decode()
            code = response.code
        except Exception as e:
            print("下载出现错误",str(e))
            html = ''
            if hasattr(e,"code"):
                code =e.code
                if num_retries > 0 and 500<code<600:
                    #如果错误不是未找到网页,则重新下载num_retries次
                    return self.download(url,headers,proxy,num_retries-1,data)
            else:
                code = None
        print(html)
        return {"html":html,"code":code}




class Throttle:
    '''
    按照延时,请求,代理IP等下载网页,处理网页中的link的类
    '''


    def __init__(self, delay):
        self.delay = delay
        self.domains = {}


    def wait(self, url):
        '''
        每下载一个html之间暂停的时间


        '''
        # 获得域名
        domain = urllib.parse.urlparse(url).netloc
        # 获得上次访问此域名的时间
        las_accessed = self.domains.get(domain)


        if self.delay > 0 and las_accessed is not None:
            # 计算需要强制暂停的时间 = 要求的间隔时间 - (现在的时间 - 上次访问的时间)
            sleep_secs = self.delay - (datetime.datetime.now() - las_accessed).seconds
            if sleep_secs > 0:
                time.sleep(sleep_secs)
        # 存储此次访问域名的时间
        self.domains[domain] = datetime.datetime.now()

然后是实现爬虫功能的类

import time
import threading
import re
import urllib.parse
import datetime




from bs4 import BeautifulSoup
from Downloader import Downloader
from MongoCache import MongoCache


SLEEP_TIME = 1


def get_links(html):
    '''
    获得一个页面上的所有链接
    '''
    bs = BeautifulSoup(html, "lxml")
    link_labels = bs.find_all("a")
    # for link in link_labels:
    return [link_label.get('href', "default") for link_label in link_labels]


def same_domain(url1, url2):
    '''
    判断域名书否相同
    '''
    return urllib.parse.urlparse(url1).netloc == urllib.parse.urlparse(url2).netloc


def normalize(seed_url, link):
    '''
    用于将绝对路径转换为相对路径
    '''
    link, no_need = urllib.parse.urldefrag(link)


    return urllib.parse.urljoin(seed_url, link)


def threader_crawler(seed_url,resource_regiex=None,link_regiex = ".*",delay=5,cache=None,download_source_callback=None,user_agent="wswp",proxies=None, num_retries=1, max_threads=10, timeout=60,max_url=500):




    downloaded = []


    crawl_queue = [seed_url]


    seen = set([seed_url])


    D = Downloader(cache = cache,delay = delay,user_agent=user_agent,proxies=proxies,num_retries=num_retries,timeout=timeout)
    print(user_agent)
    def process_queue():
        while True:


            links = []
            try:
                url = crawl_queue.pop()
            except IndexError:
                break
            else:
                html = D(url)
                downloaded.append(url)


                if download_source_callback:
                    if resource_regiex and re.match(resource_regiex,url):
                        download_source_callback(url,html)
                links.extend([link for link in get_links(html) if re.match(link_regiex,link)])
                for link in links:
                    link = normalize(seed_url, link)
                    if link not in seen:
                        seen.add(link)


                        if same_domain(seed_url,link):
                            crawl_queue.append(link)
                print("已经发现的总网页数目为",len(seen))
                print("已经下载过的网页数目为",len(downloaded))
                print("还没有遍历过的网页数目为",len(crawl_queue))
    threads=[]
    while threads or crawl_queue:
        if len(downloaded) == max_url:
            return
        for thread in threads:
            if not thread.is_alive():
                threads.remove(thread)
        while len(threads) < max_threads and crawl_queue:
            print("线程数量为", len(threads))
            thread = threading.Thread(target=process_queue)
            thread.setDaemon(True)
            thread.start()
            print("线程数量为", len(threads))
            threads.append(thread)


def main():
    starttime = datetime.datetime.now()
    threader_crawler("http://www.xicidaili.com/",max_threads=1,max_url=10,user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36")
    endtime = datetime.datetime.now()
    print("花费时间",(endtime-starttime).total_seconds())
if __name__ == "__main__":
    main()

经过测试,多线程爬虫速度要远远高于单个线程爬取,简单测试结果如下

开启30个线程爬取一百个网站用时31秒,平均一个用时0.31秒
开启10个线程爬取一百个网页用时69秒,平均一个用时0.69秒
开启1 个线程爬取一百个网站用时774秒,平均一个用时7.74秒

顺便实现了一个测试用的资源下载类,用于将电影天堂的所有资源页的电影保存到数据库

from lxml import etree
from pymongo import MongoClient
import urllib.request
import re

class download_source_callback:
    def __init__(self,client=None):
        if client:
            self.client = client
        else:
            self.client = MongoClient("localhost",12345)
        self.db = self.client.cache


    def __call__(self,url,html):
        title_regiex = "<title>(.*?)</title>"
        class_regiex = "类  别(.*?)<"
        director_regiex = ".*导  演(.*?)<"
        content_regiex = "简  介(.*?)<br /><br />◎"
        imdb_regiex = "IMDb评分&nbsp;(.*?)<"
        douban_regiex = "豆瓣评分(.*?)<"
        html = html.decode("gbk","ignore")
        m = re.search(title_regiex,html)
        if m:
            title = m.group(1)
        else:
            title = None
        m = re.search(class_regiex,html)
        if m:
            class_name = m.group(1)
        else:
            class_name = None
        m = re.search(content_regiex,html)
        if m:
            text = m.group(1).replace("<br />","")
            content = text
        else:
            content = None
        m = re.search(douban_regiex,html)
        if m:
            douban = m.group(1)
        else:
            douban = None
        m = re.search(imdb_regiex,html)
        if m:
            imdb = m.group(1)
        else:
            imdb = None
        print(title,class_name,content,douban,imdb)
        move = {
            "name":title,
            "class":class_name,
            "introduce":content,
            "douban":douban,
            "imdb":imdb
        }
        self.db.moves.update({"_id":title},{"$set":move},upsert=True)
        print("成功储存一部电影"+title)



if __name__ == "__main__":
    html= open("f:\资源.txt").read()

    a = download_source_callback()
    a("http://www.dytt8.net/html/gndy/jddy/20170529/54099.html",html)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/189683
推荐阅读
相关标签
  

闽ICP备14008679号