当前位置:   article > 正文

DataLoader()使用_train_dataloader = dataloader(dataset=train_data,

train_dataloader = dataloader(dataset=train_data, batch_size=64, shuffle=tru

  1. dataLoader的作用就是把图片按照一定的batchsize作为一个部分
  2. 四张图片,3通道,32*32,tensor就是她的target
  3. 一组imgs,targets 组合成了代码中的 for data in train_loader中的一个data

  1. import torchvision
  2. from tensorboard.compat.proto.summary_pb2 import Summary
  3. from torch.utils.data import DataLoader
  4. from torch.utils.tensorboard import SummaryWriter
  5. dataset_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
  6. train_data = torchvision.datasets.CIFAR10(root='./dataset',train=True,transform=dataset_transform,download=True)
  7. test_data = torchvision.datasets.CIFAR10(root='./dataset',train=False,transform=dataset_transform,download=True)
  8. train_loader = DataLoader(train_data,batch_size=64,shuffle=True,num_workers=0,drop_last=False)
  9. # 训练集的第一张图片
  10. image ,target = train_data[0]
  11. writer = SummaryWriter('logs')
  12. for epoch in range(2):
  13. step = 0
  14. for data in train_loader:
  15. images ,targets = data
  16. # add_images才能在一个step放多张图片
  17. writer.add_images('epoch:{}'.format(epoch),images,global_step=step)
  18. step =step+1
  19. # print(images.shape)
  20. # print(targets)
  21. writer.close()

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号