赞
踩
概念
有监督学习:训练数据既有特征(feature)又有标签(label),通过训练,让机器可以自己找到特征和标签之间的联系,在面对只有特征没有标签的数据时,可以判断出标签。
无监督学习(unsupervised learning):训练样本的标记信息未知,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础,此类学习任务中研究最多、应用最广的是"聚类" (clustering),其他无监督算法还有:密度估计(densityestimation)、异常检测(anomaly detection) 等。
半监督学习:训练集同时包含有标记样本数据和未标记样本数据,不需要人工干预,让学习器不依赖外界交互、自动地利用未标记样本来提升学习性能,就是半监督学习。
主动学习:有的时候,有类标的数据比较稀少而没有类标的数据很多,但是对数据进行人工标注又非常昂贵,这时候,学习算法可以主动地提出一些标注请求,将一些经过筛选的数据提交给专家进行标注,这个筛选过程也就是主动学习主要研究的地方了。
注:半监督学习与主动学习属于利用未标记数据的学习技术,只是其基本思想不同。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。