当前位置:   article > 正文

stm32编码器电机测速(hal库)_stm32编码器测速程序

stm32编码器测速程序

记录一下今天参考别人的代码实现了四个电机的测速。

 

编码器被广泛应用于电机测速,实现电机闭环控制。所以不论是自己做小车还是后续参加各种比赛,必须要学会编码器测速。

一.参数     

        编码电机其实就是一个带有编码器的电机,我的这个电机是一个带霍尔传感器的电机,型号是JGB37-520,然后我的电机减速比是30(一定要记住,买的时候也要看清电机减速比是多少,涉及到转速的计算),额定电压12V,然后就是编码器的参数了,见下图

电机驱动模块我用的TB6612的四路的板子,就是下面这款,很好用,就是稍微有点贵。

二.常用测速方法

主要分为M法、T法和M/T法,详情见这篇文章STM32 CubeMax 编码器电机测速 原理与实现

 三.CubeMX配置

首先是配置PWM输出定时器,我这里使用的是TIM8

然后再配置编码器输入定时器TIM2,TIM3\TIM4\TIM5按照相同的参数配置

这里开启了两个通道计数,就是倍频技术的4倍频

编码器模式下的定时器其实是个计数器,在编码器的脉冲到来时,Counter会相应地加和减,正转时加,反转时减,溢出后到达另一个极端值,比如说向上计数到达20001时会变成0

再设置每隔10ms读取定时器的值的定时器TIM6

 最后注意中断优先级TIM6要小于编码器计数的定时器。

 四.代码

 encoder.c

  1. #include "encoder.h"
  2. Motor motor1;
  3. Motor motor2;
  4. Motor motor3;
  5. Motor motor4;
  6. int t1,t2,t3,t4,j1,j2,j3,j4;
  7. void Motor_Init(void)
  8. {
  9. HAL_TIM_Encoder_Start(&ENCODER_TIM1, TIM_CHANNEL_ALL); //开启编码器定时器
  10. HAL_TIM_Encoder_Start(&ENCODER_TIM2, TIM_CHANNEL_ALL);
  11. HAL_TIM_Encoder_Start(&ENCODER_TIM3, TIM_CHANNEL_ALL);
  12. HAL_TIM_Encoder_Start(&ENCODER_TIM4, TIM_CHANNEL_ALL);
  13. __HAL_TIM_ENABLE_IT(&ENCODER_TIM1,TIM_IT_UPDATE); //开启编码器定时器更新中断,防溢出处理
  14. __HAL_TIM_ENABLE_IT(&ENCODER_TIM2,TIM_IT_UPDATE);
  15. __HAL_TIM_ENABLE_IT(&ENCODER_TIM3,TIM_IT_UPDATE);
  16. __HAL_TIM_ENABLE_IT(&ENCODER_TIM4,TIM_IT_UPDATE);
  17. HAL_TIM_Base_Start_IT(&GAP_TIM); //开启10ms定时器中断
  18. __HAL_TIM_SET_COUNTER(&ENCODER_TIM1, 10000); //编码器定时器初始值设定为10000
  19. __HAL_TIM_SET_COUNTER(&ENCODER_TIM2, 10000);
  20. __HAL_TIM_SET_COUNTER(&ENCODER_TIM3, 10000);
  21. __HAL_TIM_SET_COUNTER(&ENCODER_TIM4, 10000);
  22. motor1.lastCount = 0; //结构体内容初始化
  23. motor1.totalCount = 0;
  24. motor1.overflowNum = 0;
  25. motor1.speed = 0;
  26. motor1.direct = 0;
  27. motor2.lastCount = 0; //结构体内容初始化
  28. motor2.totalCount = 0;
  29. motor2.overflowNum = 0;
  30. motor2.speed = 0;
  31. motor2.direct = 0;
  32. motor3.lastCount = 0; //结构体内容初始化
  33. motor3.totalCount = 0;
  34. motor3.overflowNum = 0;
  35. motor3.speed = 0;
  36. motor3.direct = 0;
  37. motor4.lastCount = 0; //结构体内容初始化
  38. motor4.totalCount = 0;
  39. motor4.overflowNum = 0;
  40. motor4.speed = 0;
  41. motor4.direct = 0;
  42. }
  43. //M法测速度
  44. void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)//定时器回调函数,用于计算速度
  45. {
  46. if(htim->Instance==ENCODER_TIM1.Instance)//编码器输入定时器溢出中断
  47. {
  48. if(COUNTERNUM1 < 10000) motor1.overflowNum++; //如果是向上溢出
  49. else if(COUNTERNUM1 >= 10000) motor1.overflowNum--; //如果是向下溢出
  50. __HAL_TIM_SetCounter(&ENCODER_TIM1, 10000); //重新设定初始值
  51. if(COUNTERNUM2 < 10000) motor2.overflowNum++; //如果是向上溢出
  52. else if(COUNTERNUM2 >= 10000) motor2.overflowNum--; //如果是向下溢出
  53. __HAL_TIM_SetCounter(&ENCODER_TIM2, 10000); //重新设定初始值
  54. if(COUNTERNUM3 < 10000) motor3.overflowNum++; //如果是向上溢出
  55. else if(COUNTERNUM3 >= 10000) motor3.overflowNum--; //如果是向下溢出
  56. __HAL_TIM_SetCounter(&ENCODER_TIM3, 10000); //重新设定初始值
  57. if(COUNTERNUM4 < 10000) motor4.overflowNum++; //如果是向上溢出
  58. else if(COUNTERNUM4 >= 10000) motor4.overflowNum--; //如果是向下溢出
  59. __HAL_TIM_SetCounter(&ENCODER_TIM4, 10000); //重新设定初始值
  60. }
  61. else if(htim->Instance==GAP_TIM.Instance)//间隔定时器中断,是时候计算速度了
  62. {
  63. motor1.direct = __HAL_TIM_IS_TIM_COUNTING_DOWN(&ENCODER_TIM1);//如果向上计数(正转),返回值为0,否则返回值为1
  64. motor1.totalCount = COUNTERNUM1 + motor1.overflowNum * RELOADVALUE1;//一个周期内的总计数值等于目前计数值加上溢出的计数值
  65. motor1.speed = (float)(motor1.totalCount - motor1.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10;//算得每秒多少转
  66. if(motor1.direct==0)
  67. {
  68. t1=motor1.speed/1;
  69. j1=(motor1.speed-t1)*10000;
  70. }
  71. else
  72. {
  73. t1=-motor1.speed/1;
  74. j1=-(motor1.speed+t1)*10000;
  75. }
  76. //motor1.speed = (float)(motor1.totalCount - motor1.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10 * LINE_SPEED_C//算得车轮线速度每秒多少毫米
  77. motor1.lastCount = motor1.totalCount; //记录这一次的计数值
  78. motor2.direct = __HAL_TIM_IS_TIM_COUNTING_DOWN(&ENCODER_TIM2);//如果向上计数(正转),返回值为0,否则返回值为1
  79. motor2.totalCount = COUNTERNUM2 + motor1.overflowNum * RELOADVALUE2;//一个周期内的总计数值等于目前计数值加上溢出的计数值
  80. motor2.speed = (float)(motor2.totalCount - motor2.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10;//算得每秒多少转
  81. if(motor2.direct==0)
  82. {
  83. t2=motor2.speed/1;
  84. j2=(motor2.speed-t2)*10000;
  85. }
  86. else
  87. {
  88. t2=-motor2.speed/1;
  89. j2=-(motor2.speed+t2)*10000;
  90. }
  91. //motor1.speed = (float)(motor1.totalCount - motor1.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10 * LINE_SPEED_C//算得车轮线速度每秒多少毫米
  92. motor2.lastCount = motor2.totalCount; //记录这一次的计数值
  93. motor3.direct = __HAL_TIM_IS_TIM_COUNTING_DOWN(&ENCODER_TIM3);//如果向上计数(正转),返回值为0,否则返回值为1
  94. motor3.totalCount = COUNTERNUM3 + motor3.overflowNum * RELOADVALUE3;//一个周期内的总计数值等于目前计数值加上溢出的计数值
  95. motor3.speed = (float)(motor3.totalCount - motor3.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10;//算得每秒多少转
  96. if(motor3.direct==0)
  97. {
  98. t3=motor3.speed/1;
  99. j3=(motor3.speed-t3)*10000;
  100. }
  101. else
  102. {
  103. t3=-motor3.speed/1;
  104. j3=-(motor3.speed+t3)*10000;
  105. }
  106. //motor1.speed = (float)(motor1.totalCount - motor1.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10 * LINE_SPEED_C//算得车轮线速度每秒多少毫米
  107. motor3.lastCount = motor3.totalCount; //记录这一次的计数值
  108. motor4.direct = __HAL_TIM_IS_TIM_COUNTING_DOWN(&ENCODER_TIM4);//如果向上计数(正转),返回值为0,否则返回值为1
  109. motor4.totalCount = COUNTERNUM4 + motor4.overflowNum * RELOADVALUE4;//一个周期内的总计数值等于目前计数值加上溢出的计数值
  110. motor4.speed = (float)(motor4.totalCount - motor4.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10;//算得每秒多少转
  111. if(motor4.direct==0)
  112. {
  113. t4=motor4.speed/1;
  114. j4=(motor4.speed-t4)*10000;
  115. }
  116. else
  117. {
  118. t4=-motor4.speed/1;
  119. j4=-(motor4.speed+t4)*10000;
  120. }
  121. //motor1.speed = (float)(motor1.totalCount - motor1.lastCount) / (4 * MOTOR_SPEED_RERATIO * PULSE_PRE_ROUND) * 10 * LINE_SPEED_C//算得车轮线速度每秒多少毫米
  122. motor4.lastCount = motor4.totalCount; //记录这一次的计数值
  123. }
  124. }

  encoder.h

  1. #ifndef _ENCODER_H_
  2. #define _ENCODER_H_
  3. #include "stm32f1xx.h"
  4. #include "tim.h"
  5. //定时器号
  6. #define ENCODER_TIM1 htim2
  7. #define ENCODER_TIM2 htim3
  8. #define ENCODER_TIM3 htim4
  9. #define ENCODER_TIM4 htim5
  10. #define GAP_TIM htim6
  11. #define MOTOR_SPEED_RERATIO 30u //电机减速比
  12. #define PULSE_PRE_ROUND 11 //一圈多少个脉冲
  13. #define RADIUS_OF_TYRE 40 //轮胎半径,单位毫米
  14. #define LINE_SPEED_C RADIUS_OF_TYRE * 2 * 3.14
  15. #define RELOADVALUE1 __HAL_TIM_GetAutoreload(&ENCODER_TIM1) //获取自动装载值,本例中为20000
  16. #define COUNTERNUM1 __HAL_TIM_GetCounter(&ENCODER_TIM1) //获取编码器定时器中的计数值
  17. #define RELOADVALUE2 __HAL_TIM_GetAutoreload(&ENCODER_TIM2)
  18. #define COUNTERNUM2 __HAL_TIM_GetCounter(&ENCODER_TIM2)
  19. #define RELOADVALUE3 __HAL_TIM_GetAutoreload(&ENCODER_TIM3)
  20. #define COUNTERNUM3 __HAL_TIM_GetCounter(&ENCODER_TIM3)
  21. #define RELOADVALUE4 __HAL_TIM_GetAutoreload(&ENCODER_TIM4)
  22. #define COUNTERNUM4 __HAL_TIM_GetCounter(&ENCODER_TIM4)
  23. typedef struct _Motor
  24. {
  25. int32_t lastCount; //上一次计数值
  26. int32_t totalCount; //总计数值
  27. int16_t overflowNum; //溢出次数
  28. float speed; //电机转速
  29. uint8_t direct; //旋转方向
  30. }Motor;
  31. extern int t1,t2,t3,t4,j1,j2,j3,j4;
  32. void Motor_Init(void);
  33. void HAL_TIM_PeriodElapsedCallback1(TIM_HandleTypeDef *htim);
  34. #endif

main.c

  1. /* USER CODE BEGIN Header */
  2. /**
  3. ******************************************************************************
  4. * @file : main.c
  5. * @brief : Main program body
  6. ******************************************************************************
  7. * @attention
  8. *
  9. * Copyright (c) 2023 STMicroelectronics.
  10. * All rights reserved.
  11. *
  12. * This software is licensed under terms that can be found in the LICENSE file
  13. * in the root directory of this software component.
  14. * If no LICENSE file comes with this software, it is provided AS-IS.
  15. *
  16. ******************************************************************************
  17. */
  18. /* USER CODE END Header */
  19. /* Includes ------------------------------------------------------------------*/
  20. #include "main.h"
  21. #include "i2c.h"
  22. #include "tim.h"
  23. #include "usart.h"
  24. #include "gpio.h"
  25. /* Private includes ----------------------------------------------------------*/
  26. /* USER CODE BEGIN Includes */
  27. #include "bluetooth.h"
  28. #include "Control.h"
  29. #include "oled.h"
  30. #include "encoder.h"
  31. /* USER CODE END Includes */
  32. /* Private typedef -----------------------------------------------------------*/
  33. /* USER CODE BEGIN PTD */
  34. /* USER CODE END PTD */
  35. /* Private define ------------------------------------------------------------*/
  36. /* USER CODE BEGIN PD */
  37. /* USER CODE END PD */
  38. /* Private macro -------------------------------------------------------------*/
  39. /* USER CODE BEGIN PM */
  40. /* USER CODE END PM */
  41. /* Private variables ---------------------------------------------------------*/
  42. /* USER CODE BEGIN PV */
  43. /* USER CODE END PV */
  44. /* Private function prototypes -----------------------------------------------*/
  45. void SystemClock_Config(void);
  46. /* USER CODE BEGIN PFP */
  47. /* USER CODE END PFP */
  48. /* Private user code ---------------------------------------------------------*/
  49. /* USER CODE BEGIN 0 */
  50. /* USER CODE END 0 */
  51. /**
  52. * @brief The application entry point.
  53. * @retval int
  54. */
  55. int main(void)
  56. {
  57. /* USER CODE BEGIN 1 */
  58. /* USER CODE END 1 */
  59. /* MCU Configuration--------------------------------------------------------*/
  60. /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  61. HAL_Init();
  62. /* USER CODE BEGIN Init */
  63. /* USER CODE END Init */
  64. /* Configure the system clock */
  65. SystemClock_Config();
  66. /* USER CODE BEGIN SysInit */
  67. /* USER CODE END SysInit */
  68. /* Initialize all configured peripherals */
  69. MX_GPIO_Init();
  70. MX_TIM8_Init();
  71. MX_USART1_UART_Init();
  72. MX_I2C2_Init();
  73. MX_TIM2_Init();
  74. MX_TIM6_Init();
  75. MX_TIM3_Init();
  76. MX_TIM4_Init();
  77. MX_TIM5_Init();
  78. /* USER CODE BEGIN 2 */
  79. HAL_UART_Receive_IT(&huart1,(uint8_t *)&USART1_NewData,1);
  80. /* USER CODE END 2 */
  81. OLED_Init();
  82. OLED_CLS();
  83. OLED_ShowChar(14,1,'.',15);
  84. OLED_ShowChar(14,2,'.',15);
  85. OLED_ShowChar(14,3,'.',15);
  86. OLED_ShowChar(14,4,'.',15);
  87. OLED_ShowStr(50,5,"By Whelve",2);
  88. OLED_ShowStr(60,1,"r/s",1);
  89. OLED_ShowStr(60,2,"r/s",1);
  90. OLED_ShowStr(60,3,"r/s",1);
  91. OLED_ShowStr(60,4,"r/s",1);
  92. Motor_Init();
  93. /* Infinite loop */
  94. /* USER CODE BEGIN WHILE */
  95. while (1)
  96. {
  97. /* USER CODE END WHILE */
  98. Control();
  99. OLED_ShowNum(0,1,t1,2,15);
  100. OLED_ShowNum(18,1,j1,5,15);
  101. OLED_ShowNum(0,2,t2,2,15);
  102. OLED_ShowNum(18,2,j2,5,15);
  103. OLED_ShowNum(0,3,t3,2,15);
  104. OLED_ShowNum(18,3,j3,5,15);
  105. OLED_ShowNum(0,4,t4,2,15);
  106. OLED_ShowNum(18,4,j4,5,15);
  107. /* USER CODE BEGIN 3 */
  108. }
  109. /* USER CODE END 3 */
  110. }
  111. /**
  112. * @brief System Clock Configuration
  113. * @retval None
  114. */
  115. void SystemClock_Config(void)
  116. {
  117. RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  118. RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  119. /** Initializes the RCC Oscillators according to the specified parameters
  120. * in the RCC_OscInitTypeDef structure.
  121. */
  122. RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  123. RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  124. RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  125. RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  126. RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  127. RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  128. RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  129. if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  130. {
  131. Error_Handler();
  132. }
  133. /** Initializes the CPU, AHB and APB buses clocks
  134. */
  135. RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
  136. |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  137. RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  138. RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  139. RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  140. RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  141. if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  142. {
  143. Error_Handler();
  144. }
  145. }
  146. /* USER CODE BEGIN 4 */
  147. /* USER CODE END 4 */
  148. /**
  149. * @brief This function is executed in case of error occurrence.
  150. * @retval None
  151. */
  152. void Error_Handler(void)
  153. {
  154. /* USER CODE BEGIN Error_Handler_Debug */
  155. /* User can add his own implementation to report the HAL error return state */
  156. __disable_irq();
  157. while (1)
  158. {
  159. }
  160. /* USER CODE END Error_Handler_Debug */
  161. }
  162. #ifdef USE_FULL_ASSERT
  163. /**
  164. * @brief Reports the name of the source file and the source line number
  165. * where the assert_param error has occurred.
  166. * @param file: pointer to the source file name
  167. * @param line: assert_param error line source number
  168. * @retval None
  169. */
  170. void assert_failed(uint8_t *file, uint32_t line)
  171. {
  172. /* USER CODE BEGIN 6 */
  173. /* User can add his own implementation to report the file name and line number,
  174. ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  175. /* USER CODE END 6 */
  176. }
  177. #endif /* USE_FULL_ASSERT */

 代码部分参考自STM32 CubeMax 编码器电机测速 原理与实现

 

最后效果不错 

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号