赞
踩
合合信息TextIn(Text Intelligence)团队在2023年12月31日参与了中国图象图形学学会青年科学家会议 - 垂直领域大模型论坛。在会议上,丁凯博士分享了文档图像大模型的思考与探索,完整阐述了多模态大模型在文档图像领域的发展与探索,并表达了对未来发展路径和应用场景潜力的看法。
合合TextIn(Text Intelligence)研究团队,经过16年的专注和深耕于智能文档处理领域,已经在智能文档图像处理、文档解析与识别、版面分析与还原、文档信息抽取与理解、文档安全等全方位的智能文档处理(Intelligent Document Processing)技术上取得显著成就。这一团队不仅获得了117个国内外发明专利,还在16项顶级AI竞赛中获得了世界冠军,对智能文档领域做出了杰出贡献。他们发布的名片全能王、扫描全能王和TextIn智能文档处理云平台textin.com正为全球的用户和企业提供卓越服务。
尽管大模型技术,特别是GPT4-V Gemini等新技术的快速发展,已经极大地推动了技术界的进步,但领域内的核心问题依然存在。在智能文档处理(IDP)领域,有四个主要问题仍然是合合TextIn团队关注的重点。随着大模型技术的出现和发展,我们对技术的期望已经升级,寻求更高效、更精准的解决方案来应对这些长期存在的挑战。
合合TextIn团队在智能文档处理技术领域进行了广泛而深入的研究,涵盖了文档图像分析与预处理、文档解析与识别、版面分析与还原、文档信息抽取与理解、AI安全以及知识化、存储检索和管理等多个关键技术。这些技术的研究不仅彰显了团队的专业能力,而且取得了丰富的成果,极大地推动了智能文档处理领域的发展。
合合TextIn团队推出了TextIn智能文档处理云平台,一个创新性的解决方案,旨在将他们的研究成果以多样化的形式提供给全球用户和企业。通过访问textin.com,用户可以体验到这个平台如何高效、智能地处理文档,从而满足各种文档管理需求。
2023年12月31日,合合TextIn团队丁凯博士参加中国图象图形学学会青年科学家会议 - 垂直领域大模型论坛,在论坛上充分展现了GPT-4V在文档领域的表现。
OpenAI最近发布了GPT-4V(ision),这是一个划时代的大型多模态模型(LMM),它代表了GPT-4在多模态交互方面的重大进步。GPT-4V不仅处理文本,还整合了图像和声音等多种数据类型的输入,显著提升了模型的理解和推理能力。丁凯博士在介绍中强调,与传统方法相比,GPT-4V能够进行更全面的文档和图像分析。它不依赖预定义的规则,而是通过学习大量数据来捕捉复杂的上下文关系和特征表示。这种方法在理解和处理多模态内容方面表现出优越性,能够同时处理文本和图像信息,提供更全面和准确的结果。此外,GPT-4V的架构和训练方式具有高度的灵活性和可扩展性,可根据不同任务和需求进行调整。相比之下,传统的数据处理方法往往局限于特定的算法和流程,难以适应多变的应用场景。GPT-4V的推出不仅标志着OpenAI在多模态技术领域的新突破,也为推动通用智能的发展开辟了新道路。
GPT4-V多模态大模型大幅度提升了AI技术在文档分析与识别领域的能力边界,端到端实现了文档的识别到理解的全过程。支持端到端解决识别和理解问题,认知能力强,支持识别和理解的文档元素类型远超传统IDP算法。
丁凯博士在会议中展示了GPT-4V在智能文档处理(IDP)领域的强大表现:
丁凯博士在会议中展示了GPT-4V在IDP领域的评测结果,表达虽然看到了其强大的能力,但是在OCR精度距离SOTA有较大差距,以及长文档依赖外部的OCR/文档解析引擎。
GPT-4V,尽管在认知领域展现潜能,却在智能文档处理任务中遭遇技术障碍。丁凯博士强调,该模型面临“幻觉现象”——不当地将文字内容与图像细节相结合,导致判断失误和内容产生偏差,特别是在处理手写中文诗歌时尤为明显。一项对GPT-4V在光学字符识别(OCR)能力的综合评估表明,尽管它能有效处理拉丁字符并适应不同分辨率的图像,但在解析多语言文本和复杂视觉场景时仍面临挑战。此外,模型运行的高成本和持续迭代的复杂性也对其广泛应用构成了阻碍。因此,专用OCR系统在这一领域仍具备关键价值。
多模态大型模型在密集文本领域的应用受限,主要由于其侧重于基于文本的语义分析,而在视觉数据解析方面能力不足。例如,面对细粒度文本处理(如细小的签名、复杂的古文字),由于受视觉感知和文字辨识能力的限制,传统的语言模型无法有效应对。为了突破这些限制,需要进一步的研究探索和技术创新。
合合信息与华南理工大学联合实验室共同研究,针对多模态大模型目前针对OCR仍无法达到SOTA的问题,提出了两个在文档图像多模态大模型上的研究成果。
第一个研究成果是UPOCR,一种文档图像像素级多任务处理的统一模型。模型如图所示,UPOCR是一个通用的OCR模型,引入可学习的Prompt来指导基于ViT的编码器-解码器架构,统一了不同像素级OCR任务的范式、架构和训练策略。 UPOCR的通用能力在文本去除、文本分割和篡改文本检测任务上得到了广泛验证,显著优于现有的专门模型。
这是文本擦除、分割、及篡改检测与现有子任务的SOTA方法的可视化对比图,可见方法取得了更优异的效果
丁凯博士在会议中展示了另外一个研究成果,针对OCR大一统模型相关的研究范式概述,以及近期OCR大一统模型相关的研究成果
丁凯博士在会议分享的最后,展示了合合TextIn团队对于多模态大模型在文档领域应用的范式与应用洞见,该范式包含以下几个关键步骤:
新闻简报:
文档图像输入:技术首先处理文档的图像形式,包括扫描的纸质文件、拍照的照片,或电子文档的页面图像。
文档识别与版面分析:在此阶段,系统会识别文档中的文字、图片、表格等元素,并分析版面布局。这包括标题、段落、页眉和页脚,有助于理解文档的总体结构和内容组织。
文档切分和召回:技术将文档切分,分离不同部分的内容以便进一步处理。此外,实施召回策略来检索和提取特定元素,如标题、关键字和段落内容。
大语言模型问答应用:最后阶段,大语言模型问答用于文档中信息提取的问答任务。通过训练模型理解文档内容,实现智能理解和交互式查询,以回答用户提出的问题。
可与LLM做上下游的衔接和应用。该产品可对文档的图片版面进行分析,输出图、表、列表、文本、水印、页眉页脚、印章、公式的位置及文字,并输出分版块内容的OCR识别结果,支持52种语言,手写、印刷体混排多种场景。访问链接:https://www.textin.com/market/detail/document
最新技术动态显示,以GPT4-V为代表的多模态大模型技术在文档识别与分析领域取得了显著进展,为传统的图像文档处理技术带来了重大挑战。虽然大模型技术极大地推进了该领域的发展,但仍有许多待解决的问题,需要进一步的研究和探索。这些问题包括如何更好地结合大模型的能力来优化图像文档处理。展望未来,感知与认知的结合预计将为用户带来更智能化、高效率和个性化的文档处理体验。随着技术的不断进步,这种结合在商业、教育、科研等多个领域的应用将变得越来越重要。我们期待合合信息在模式识别、深度学习、图像处理和自然语言处理等领域的深入发展,以技术创新惠及更广泛的人群。
填写问卷抽奖!赠送10人50元京东卡!合合TextIn团队提供给大家福利!
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。