赞
踩
10%
的结构化数据,存储在数据库中;90%
的非结构化数据,它们与人类信息密切相关。信息化浪潮 | 发生时间 | 标志 | 解决问题 | 代表企业 |
---|---|---|---|---|
第一次浪潮 | 1980年前后 | 个人计算机 | 信息处理 | Intel、AMD、IBM、苹果、微软、联想、戴尔、惠普等 |
第二次浪潮 | 1995年前后 | 互联网 | 信息传输 | 雅虎、谷歌、阿里巴巴、百度、腾讯等 |
第三次浪潮 | 2010年前后 | 物联网、云计算和大数据 | 信息爆炸 | 将涌现出一批新的市场标杆企业 |
阶段 | 时间 | 内容 |
---|---|---|
第一个阶段:萌芽期 | 上世纪90年代至本世纪初 | 随着数据挖掘理论和数据库技术的逐步成熟,一批商业智能工具和知识管理技术开始被应用,如数据仓库、专家系统、知识管理系统等。 |
第二个阶段:成熟期 | 本世纪前十年 | Web2.0应用迅猛发展,非结构化数据大量产生,传统处理方法难以应对,带动了大数据技术的快速突破,大数据解决方案逐渐走向成熟,形成了并行计算与分布式系统两大核心技术,谷歌的GFS和MapReduce等大数据技术受到追捧,Hadoop平台开始大行其道。 |
第三个阶段:大规模应用期 | 2010年以后 | 大数据应用渗透各行各业,数据驱动决策,信息社会智能化程度大幅提高。 |
技术层面 | 功能 |
---|---|
数据采集 | 利用ETL工具将分布的、异构数据源中的数据如关系数据、平面数据文件等,抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础;或者也可以把实时采集的数据作为流计算系统的输入,进行实时处理分析。 |
数据存储与管理 | 利用分布式文件系统、数据仓库、关系数据库、NoSQL数据库、云数据库等,实现对结构化、半结构化和非结构化海量数据的存储和管理。 |
数据处理与分析 | 利用分布式并行编程模型和计算框架,结合机器学习和数据挖掘算法,实现对海量数据的处理和分析;对分析结果进行可视化呈现,帮助人们更好地理解数据、分析数据。 |
数据隐私与安全 | 在从大数据中挖掘潜在的巨大商业价值和学术价值的同时,构建隐私数据保护体系和数据安全体系,有效保护个人隐私和数据安全。 |
大数据计算模式 | 解决问题 | 代表产品 |
---|---|---|
批处理计算 | 针对大规模数据的批处理 | MapReduce、Spark等 |
流计算 | 针对流数据的实时处理 | Storm、S4、Stream、Puma、DStream、Super Mario、银河流数据处理平台等 |
图计算 | 针对大规模图结构数据的处理 | Pregel、Graphx、PowerGraph、Hama、GoldenOrb等 |
查询分析计算 | 大规模数据的存储管理和查询分析 | Dremel、Hive、Cassandra、Impala等 |
产业链环节 | 包含内容 |
---|---|
IT基础设施层 | 包括提供硬件、软件、网络等基础设施以及提供咨询、规划和系统集成服务的企业,比如,提供数据中心解决方案的BM、惠普和戴尔等,提供存储解决方案的EMC,提供虚拟化管理软件的微软、思杰、SUN、Redhat等 |
数据源层 | 大数据生态圈里的数据提供者,是生物大数据(生物信息学领域的各类研究机构)、交通大数据(交通主管部门)、医疗大数据(各大医院、体检机构)、政务大数据(政府部门)、电商大数据(淘宝、天猫、苏宁云商、京东等电商)、社交网络大数据(微博、微信、人人网等〉、搜索引擎大数据(百度、谷歌等〉等各种数据的来源 |
数据管理层 | 包括数据抽取、转换、存储和管理等服务的各类企业或产品,比如分布式文件系统(如Hadoop的HDFS和谷歌的GFS)、ETL工具(Informatica、Datastage、Kettle等)、数据库和数据仓库(Oracle、MySQL、sQL Server、HBase、GreenPlum等) |
数据分析层 | 包括提供分布式计算、数据挖掘、统计分析等服务的各类企业或产品,比如,分布式计算框架MapReduce、统计分析软件SPSS和SAS、数据挖掘工具Weka、数据可视化工具Tableau、BI工具(MicroStrategy. Cognos、BO)等等 |
数据平台层 | 包括提供数据分享平台、数据分析平台、数据租售平台等服务的企业或产品,比如阿里巴巴、谷歌、中国电信、百度等 |
数据应用层 | 提供智能交通、智慧医疗、智能物流、智能电网等行业应用的企业、机构或政府部门,比如交通主管部门、各大医疗机构、菜鸟网络、国家电网等 |
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。