当前位置:   article > 正文

springboot 实现机器学习_AWS 专家教你使用 Spring Boot 和 DJL ,轻松搭建企业级机器学习微服务!...

springboot 实现机器学习_AWS 专家教你使用 Spring Boot 和 DJL ,轻松搭建企业级机器学习微服务!...

04287284-4d24-eb11-8da9-e4434bdf6706.gif

05287284-4d24-eb11-8da9-e4434bdf6706.png

作者 | Qing Lan,Mikhail Shapirov

责编 | Carol

 封图 | CSDN 下载自视觉中国

出品 | CSDN云计算(ID:CSDNcloud)

许多AWS云服务的用户,无论是初创企业还是大公司,都在逐步将机器学习 (ML) 和深度学习 (DL) 任务搭载在他们已有产品之上。大量的机器学习任务应用在商业和工业领域,例如应用在图像和视频中的目标检测,文档中的情感分析,大数据中的欺诈识别。

尽管机器学习应用广泛应用在其他语言中(例如Python),但是对于广大已有产品的开发者学习和集成成本依然很高。试想一下,如果要用另一种语言集成在已有的Java服务中,从写代码,编译,测试到最后部署都要做出大量改变。

为了解决用户在这方面上的痛点,本文将提出一种解决问题的新思路:用户无需对已有的资源和人员重新调配,可以直接部署机器学习应用在现有的服务中。

06287284-4d24-eb11-8da9-e4434bdf6706.jpeg

Spring Boot在生产环境中的应用

Spring Boot是一个在微服务领域中广泛应用的开源平台。它的主要特色就是简化了分布式系统分发管理应用的过程。但是就目前来看,用户可选的部署ML应用方案屈指可数。就拿推理应用来说,用户可以通过使用Stock API 创建一个基于C++或者Python应用的RPC API来实现不同语言的推理任务。 尽管这个解决方案可以在最短时间内解决部署的燃眉之急,但是从长期运行的效果来看,它造成了大量的维护成本以及效率问题。单纯就RPC通信这一方面来说,可能仅仅通信的时间消耗就已经达到了推理的时间消耗,造成这个解决方案成为整体应用速度提升的瓶颈。 AWS云服务推出了基于深度学习的开源Java库https://djl.ai/。主要是为了简化昂贵且繁琐的开发流程。 这篇文章会从一个基本的Spring boot 应用出发,利用DJL,来集成机器学习应用在微服务中。 仅通过几行代码,就可以轻松实现目标检测和图像分类任务。 07287284-4d24-eb11-8da9-e4434bdf6706.jpeg

配置Spring Boot Starter (SBS)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/632406
推荐阅读
相关标签
  

闽ICP备14008679号