当前位置:   article > 正文

网络安全最全图解支付-金融级密钥管理系统:构建支付系统的安全基石(1),膜拜

网络安全最全图解支付-金融级密钥管理系统:构建支付系统的安全基石(1),膜拜

还有兄弟不知道网络安全面试可以提前刷题吗?费时一周整理的160+网络安全面试题,金九银十,做网络安全面试里的显眼包!

王岚嵚工程师面试题(附答案),只能帮兄弟们到这儿了!如果你能答对70%,找一个安全工作,问题不大。

对于有1-3年工作经验,想要跳槽的朋友来说,也是很好的温习资料!

【完整版领取方式在文末!!】

93道网络安全面试题

内容实在太多,不一一截图了

黑客学习资源推荐

最后给大家分享一份全套的网络安全学习资料,给那些想学习 网络安全的小伙伴们一点帮助!

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

1️⃣零基础入门
① 学习路线

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

image

② 路线对应学习视频

同时每个成长路线对应的板块都有配套的视频提供:

image-20231025112050764

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  1. 密钥存储中心和硬件加密机部署在隔离区。
  2. 管理中心部署在管理区或者隔离机房,建议参考安全团队的建议。
  3. 安全服务中心部署在各应该APP所在机房,就近提供加解密、签验签等运算服务。可水平扩展。
  4. 安全服务中心有本地缓存,在隔离机房短时间内无法连接时,仍然可以正常提供服务。

6. 设计细节

6.1. 数据流图

核心有4个步骤:

  1. 初始化主密钥。
  2. 配置工作密钥。
  3. 同步工作密钥到各节点的安全服务中心。
  4. 实际执行加密解密、签名验签服务。

6.2. 密钥分级设计

在构建支付系统的密钥管理系统(KMS)时,密钥分级设计是确保密钥安全性的基础。通过将密钥分为不同的级别并应用不同的管理和保护策略,可以有效地降低密钥泄露的风险,提升系统的安全性。以下是密钥分级设计的核心要素:

  1. 主密钥/本地主密钥(Master Key / Local Master Key)
    • 级别:最高级别,作为其他密钥的根密钥。
      • 保护:存储于硬件安全模块(HSM)中,采用物理和逻辑双重保护机制,确保其安全性。
      • 用途:用于加密和解密工作密钥,不直接参与业务数据的加解密。
      • 管理:由最高权限的安全管理员进行管理,严格控制访问和操作。维护时一般需要3名管理员+1名操作员同时在场,管理员和操作员都有自己的物理管理卡和独立操作密码,全部验证通过后才能操作。
  1. 工作密钥(Working Key)
    • 级别:次级别,用于实际的业务数据加解密操作。
      • 保护:由主密钥加密保护,存储在加密数据库或安全配置文件中。
      • 用途:直接用于加密和解密业务数据,例如用户信息、交易数据等。
      • 管理:支持自动轮换和更新,减少手动干预,提高管理效率和安全性。

需要说明的是,严格意义上说,区域主密钥也是保存在硬件加密机中的。但在实现时,如果在区域节点不想部署硬件加密机,就可以生成公私钥对,把私钥放在区域节点,公钥放在密钥存储中心。

密钥分级设计的优势:

  • 分层保护:通过对密钥进行分级管理,构建了多层防御体系,即便低级别密钥被泄露,也不会直接威胁到系统的根本安全。
  • 灵活管理:主密钥和工作密钥的分离,使得密钥轮换和更新更加灵活高效,同时减少了主密钥的使用频率,降低了安全风险。
  • 性能与安全的平衡:通过在不同层级应用不同的密钥,可以在保证安全的前提下,优化系统性能,特别是对于高频率的业务数据加解密操作。因为硬件加密机的运算效率有限,且采购及运维成本高昂,不便于水平扩展。

密钥分级设计是构建高安全性支付系统不可或缺的一环,它为密钥的安全管理提供了一套完整的框架。

6.3. 访问控制

在构建支付系统的密钥管理系统(KMS)中,实现严格的访问控制机制是保障系统安全的关键。访问控制的主要目的是确保只有授权用户或应用才能访问和操作密钥,同时保护密钥不被非法导出或滥用。以下是访问控制的三个核心部分:

  1. 用户分级管理
  • 用户角色和权限:系统应定义不同的用户角色,每种角色具有不同的权限级别。例如,系统管理员拥有最高权限,可以管理用户和密钥策略;安全管理员负责主密钥的管理,包括生成、备份和恢复等操作;普通用户只能使用工作密钥进行日常的加解密操作。
  • 主密钥操作的物理安全:主密钥的操作,如生成、备份和恢复,只能由特定的安全管理员在物理安全的环境下通过硬件安全模块(HSM)直接操作。这样的操作需记录详细的审计日志,并且在执行关键操作时需要多人同时在场。
  • 工作密钥的审批流程:导出工作密钥或进行敏感操作时,需要通过多层审批流程。审批流程中涉及的每一步都应有清晰的操作记录和日志,以便于事后审计和追踪。

2. 密钥与应用的绑定

  • 应用级访问控制:每个密钥应指定可访问的应用列表。只有列表中的应用才能使用对应的密钥进行加解密或签名验签操作。这样可以有效防止密钥被非授权应用使用,增强密钥的安全性。
  • 密钥使用策略:对于每个密钥,可以定义详细的使用策略,包括使用的时间窗口、IP地址范围、访问频率等。这些策略可以在KMS中配置,并由系统强制执行。 但因为主要提供内网应用使用,一般很少这么限制。

3. 加密解密和签名验签的集中处理

  • 密钥的集中处理:所有的加密解密和签名验签操作都应通过密钥管理系统集中完成。通过API调用或服务接口的形式提供给外部应用,避免直接暴露密钥
  • 工作密钥的保护:工作密钥应始终存储在加密形式,且不能被导出或直接读取。所有密钥操作都在KMS内部完成,确保密钥的安全。

通过这种分层的访问控制机制,结合用户分级管理、密钥与应用的绑定以及加密解密和签名验签的集中管理,可以有效地保护密钥不被未授权访问和使用,从而为支付系统提供坚实的安全保障。

6.4. 工作密钥版本管理

在密钥管理系统(KMS)中,工作密钥版本管理是一个关键的安全措施,主要通过定时轮换机制来增强系统的安全性。此机制确保即使旧密钥被泄露,攻击者也无法利用它来破解过去或未来的加密数据。以下是工作密钥版本管理的主要方面:

定义密钥版本

  • 版本命名:为每个工作密钥定义唯一的版本标识符,通常包括密钥ID和版本号。
  • 版本属性:记录每个版本的关键属性,如创建时间、启用时间、过期时间和状态(激活、过期、废弃)。

定时轮换机制

  • 自动轮换:通过预设的策略自动轮换工作密钥。例如,根据最佳实践或合规要求,可以设置每三个月自动生成新的工作密钥版本并切换至新版本。
  • 轮换通知:在轮换发生前,系统应发送通知给相关的系统管理员和应用,确保它们准备好迁移到新的密钥版本。
  • 平滑过渡:在新旧版本切换期间,保持旧版本的可用性一段时间,以便完成未处理的加密操作,然后逐步淘汰旧版本。

版本回滚

  • 应急回滚:在发现新版本密钥存在问题时,系统应支持快速回滚至前一个稳定版本,以保障业务连续性。

密钥版本跟踪与审计

  • 版本历史记录:维护每个工作密钥的版本历史记录,包括每个版本的使用情况和更换原因。
  • 审计日志:记录所有密钥版本操作的详细审计日志,包括版本创建、启用、废弃和删除等,以支持安全审计和合规性检查。

一个简单的实现方案

对于内部数据,直接在密文的前面加上5位数的版本号。这样数据和密钥版本就形成一个绑定关系。

通过实施工作密钥版本管理和定时轮换机制,KMS能够有效降低密钥泄露的风险,提升支付系统的整体安全性。此外,该机制还有助于满足行业安全标准和合规要求,如PCI-DSS等,进一步保护敏感数据的安全。

6.5. 隔离部署

隔离部署是加强支付系统密钥管理系统(KMS)安全性的一个重要策略,它通过物理或逻辑手段,将敏感组件和操作环境与其他系统部分分离,从而减少潜在的安全威胁和风险。以下是实施隔离部署的关键考虑因素:

物理隔离

  • 硬件安全模块(HSM)部署:将存储和管理主密钥的硬件安全模块(HSM)物理隔离在受控的安全环境中,例如专用的安全机房。这样做不仅提高了主密钥的安全性,而且防止了未经授权的物理访问。
  • 独立的密钥管理网络:建立一个独立的网络环境专门用于密钥管理操作,与生产网络和办公网络隔离,避免潜在的跨网络攻击。

网络隔离

  • 防火墙和网络分段:使用防火墙和网络分段技术,将密钥管理系统与外部网络及其他内部系统分离,防止潜在的网络攻击和数据泄露。
  • 加密通信:确保所有进出密钥管理系统的网络通信都采用加密协议,如TLS,保护数据传输的安全性。

数据隔离

  • 敏感数据加密:确保存储和传输的所有敏感数据(包括密钥和加密的业务数据)都经过加密,即使数据被非法访问,也无法被解读。
  • 备份与恢复策略:对密钥和关键配置数据实施定期备份,并将备份数据存储在与生产环境隔离的安全位置,同时确保快速恢复能力以应对可能的灾难事件。

通过实施隔离部署策略,KMS能够有效地降低安全威胁,提高支付系统的整体安全性和稳定性。隔离部署不仅有助于防御外部攻击,也能减轻内部错误或滥用所带来的风险。

6.6. 性能设计

在密钥管理系统(KMS)的设计中,性能是一个不可忽视的关键要素。一个高性能的KMS能够保证在密钥生成、存取、更新以及加密服务的过程中,响应迅速,满足支付系统等高并发环境下的需求。以下是构成KMS性能设计的主要策略:

缓存机制

  • 密钥缓存:对频繁访问的工作密钥和会话密钥实施缓存,减少对密钥存储库的直接访问,也减少对硬件加密机的访问,提高响应速度。使用合适的缓存策略(如LRU算法)来管理缓存密钥的生命周期,确保密钥的即时更新和过期密钥的清除。同时

负载均衡与水平扩展

  • 请求分发:采用负载均衡技术在多个KMS节点之间分发请求,平衡系统负载,提高处理能力。一般的分布式部署架构都支持。
  • 水平扩展:因为工作密钥被缓存在本地运算节点,所以安全服务中心可以水平扩展,而不受限于硬件加密机。

并行处理

  • 多线程操作:加解密等这些操作是运算优先型业务,应减少线程数,以减少CPU的切换损耗。

通过上述性能设计策略,KMS能够满足高并发、低延迟的性能要求。以前实测下来,单机AES加解密能到2万左右的QPS。

6.7. 容灾设计

在构建密钥管理系统(KMS)时,容灾设计是确保系统在面对硬件故障、软件错误、人为操作失误或自然灾害等情况下仍能保持业务连续性和数据完整性的关键。以下是容灾设计的核心要素:

数据复制与同步

  • 跨地域复制:为了保证数据的高可用性和持久性,重要数据(包括密钥材料、配置信息等)应跨多个地域进行复制。使用实时数据复制技术确保各地域数据的一致性。
  • 异地备份:定期将关键数据异地备份,以防单点故障导致的数据丢失。备份数据应加密存储,以保护其安全性。

自动故障转移

  • 故障检测与自动转移:实现系统的自动故障检测机制,一旦检测到服务异常或系统故障,能够自动将请求转移到备用系统或节点,确保服务不间断。
  • 负载均衡:通过负载均衡技术分配请求到健康的服务节点,提高系统整体的稳定性和可用性。

系统冗余设计

  • 冗余硬件:在关键组件上采用冗余设计,比如同一机房需要部署多台硬件加密机(HSM),以减少单点故障的风险。
  • 服务冗余:部署冗余的服务实例,包括数据库、应用服务器等,确保任何单一实例的故障都不会影响到整个系统的运行。 这也是在线服务部署的常规动作。

容灾演练

  • 定期演练:定期进行容灾演练,验证和改进容灾计划的有效性,确保在真正的灾难发生时能够快速、有效地恢复服务。
  • 演练反馈:对容灾演练的结果进行分析,并根据反馈优化容灾计划和技术方案。

通过上述容灾设计措施,KMS能够在面对各种不可预测的故障和灾害时,保证密钥服务的持续可用性和数据的完整性,为支付系统等关键业务提供坚实的安全基础。

7. 常见误区

在工作和同事的交流中,发现对于密钥的保存和使用有几个常见误区:

  1. 硬编码密钥:在代码中硬编码密钥,或者将密钥以明文形式存储在配置文件中。这使得密钥容易被未授权的人访问,尤其是在源代码公开或配置文件被泄露的情况下。
  2. 密钥复用:为了简化管理,使用同一个密钥进行多种不同的加密任务。这种做法大大增加了密钥被破解的风险,一旦密钥被破解,所有使用该密钥加密的数据都会受到威胁。
  3. 硬编码密钥:在代码中硬编码密钥,或者将密钥以明文形式存储在配置文件中。这使得密钥容易被未授权的人访问,尤其是在源代码公开或配置文件被泄露的情况下。
  4. 忽视密钥的生命周期管理:一旦生成密钥,就不再更换或更新。不定期轮换密钥会增加密钥被破解的风险,且一旦密钥泄露,长期内的数据都将不再安全。
  5. 不适当的密钥存储:将密钥存储在不安全的环境中,例如普通的数据库或文件系统。未经加密保护的密钥容易被窃取,尤其是在遭受数据泄露或系统入侵时。
  6. 缺乏合适的访问控制:对密钥访问权限控制不严,未实施基于角色的访问控制(RBAC)。这可能导致未授权用户访问和使用密钥,增加内部威胁的风险。

这里面部分原因是安全的专业知识不够,或者图一时方便,或者条件不具备(比如无法采购硬件加密机,或研发资源不足),但不无论如何,密钥的保存和使用是一整套完整的策略和落地,需要公司中高层重视才有完整落地的可能性。

8. 最佳实践

8.1. 实施步骤

总体而言,文章涉及的方案设计所涉及的知识储备及研发资源都是比较高的,对于一些中小公司来,建议分步骤实施:

  1. 明确密钥管理和使用的规范。
  2. 建设一个基础的密钥管理系统,统一管理和使用密钥。
  3. 对密钥管理系统进行网络和安全加固,比如独立网段,访问控制,硬件加密机等。

8.2. 用户密码管理

用户密码在所有公司都是有的,登录密码,支付密码等归属这类。也经常在网上看到新闻说一些大公司的用户密码是明文保存在数据库中并被泄露。

密码设计需要遵守以下几个准则:

  1. 前端需要非对称加密后传给后端。
  2. 后端需要解密后,再加上盐值重新对称加密后保存到DB。

为什么使用用户盐值?因为每个用户的盐值都不一样,这样即使两个用户原始密码是一样的,加密出来的密文也是不一样的。

为什么前端需要非对称加密?因为公钥是可以公开的。

为什么后端需要对称加密用户的密码,而不是使用散列?因为可以做密钥轮换。如果不考虑密钥轮换,可以使用SHA256散列算法。

为什么使用硬件加密机?因为更安全,没有条件的情况下,那就使用SHA256散列算法更安全。

这里给一个简单的实现参考。

说明:

  1. 首先由加解密服务生成RSA公钥,给到前端。
  2. 用户输入的密码,经RSA公钥加密后转到后端,后端读取用户盐值,一起传给加解密服务进行转加密。
  3. 加解密服务先使用RAS私钥解密,然后重新把密码明文和盐值对称加密返回。
  4. 后端保存密码密文到数据库。

9. 结束语

正如开头说的“密钥的价值等于数据的价值”,如果你的数据价值无可估量,那么你的密钥价值也是无可估量的。无论对于支付系统还是非支付类系统,密钥管理是同样重要的。构建一个高效、安全且可靠的密钥管理系统(KMS)不但是支付系统设计中的核心任务,也是每家互联网公司开展业务的核心任务,只是有很多公司没有意识到这点。

通过今天这篇文章,我们深入探讨了金融级密钥管理系统的基本概念、设计原则、以及核心的架构方案,旨在为读者提供一个全面、深入的视角来理解KMS在支付系统中的关键作用及如何设计与实现。此外,我们还讨论了如何通过密钥的分级管理、访问控制、工作密钥版本管理、隔离部署、性能设计和容灾设计等细节设计,确保密钥的安全性和系统的稳定性。整个设计虽然有点复杂,尤其是对没有安全经验的研发同学来说,但是在支付的世界里,安全是最基础的要求。

最后,感谢阅读和关注,希望这篇文章能够对你的工作有用。

学习路线:

这个方向初期比较容易入门一些,掌握一些基本技术,拿起各种现成的工具就可以开黑了。不过,要想从脚本小子变成黑客大神,这个方向越往后,需要学习和掌握的东西就会越来越多以下是网络渗透需要学习的内容:
在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/647166
推荐阅读
相关标签
  

闽ICP备14008679号