当前位置:   article > 正文

redis hashmap过期_redis

redis hashmap 过期

1、什么是Redis?

Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到硬盘上进行保存。

因为是纯内存操作,Redis的性能非常出色,每秒可以处理超过 10万次读写操作,是已知性能最快的Key-Value DB。

Redis的出色之处不仅仅是性能,Redis最大的魅力是支持保存多种数据结构,此外单个value的最大限制是1GB,不像 memcached只能保存1MB的数据,因此Redis可以用来实现很多有用的功能。

比方说用他的List来做FIFO双向链表,实现一个轻量级的高性 能消息队列服务,用他的Set可以做高性能的tag系统等等。

另外Redis也可以对存入的Key-Value设置expire时间,因此也可以被当作一 个功能加强版的memcached来用。Redis的主要缺点是数据库容量受到物理内存的限制,不能用作海量数据的高性能读写,因此Redis适合的场景主要局限在较小数据量的高性能操作和运算上。

2、Redis有哪些数据结构

(一)String最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。(二)hash这里value存放的是结构化的对象,方便操作其中的某个字段。在做单点登录的时候,可以用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。(三)list可以做简单的消息队列的功能。另外可以利用lrange命令,做基于redis的分页功能,性能极佳。(四)set可以做全局去重的功能。(五)sorted setsorted set多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作

3、redis的过期策略以及内存淘汰机制

redis采用的是定期删除+惰性删除策略。为什么不用定时删除策略?定时删除,用一个定时器来负责监视key,过期则自动删除。虽然内存及时释放,但是十分消耗CPU资源。在大并发请求下,CPU要将时间应用在处理请求,而不是删除key,因此没有采用这一策略.定期删除+惰性删除是如何工作的呢?定期删除,redis默认每个100ms检查,是否有过期的key,有过期key则删除。需要说明的是,redis不是每个100ms将所有的key检查一次,而是随机抽取进行检查(如果每隔100ms,全部key进行检查,redis岂不是卡死)。因此,如果只采用定期删除策略,会导致很多key到时间没有删除。于是,惰性删除派上用场。也就是说在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除。采用定期删除+惰性删除就没其他问题了么?不是的,如果定期删除没删除key。然后你也没即时去请求key,也就是说惰性删除也没生效。这样,redis的内存会越来越高。那么就应该采用内存淘汰机制。在redis.conf中有一行配置

maxmemory-policy volatile-lru

该配置就是配内存淘汰策略的(

MySQL 里有 2000w 数据,redis 中只存 20w 的数据,如何保证 redis 中的数据都是热点数据?

)volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰no-enviction(驱逐):禁止驱逐数据,新写入操作会报错ps:如果没有设置 expire 的key, 不满足先决条件(prerequisites); 那么 volatile-lru, volatile-random 和 volatile-ttl 策略的行为, 和 noeviction(不删除) 基本上一致。

4、设置键的生存时间和过期时间

redis有四种命令可以用于设置键的生存时间和过期时间:

EXPIRE <KEY><TTL> : 将键的生存时间设为 ttl 秒PEXPIRE <KEY><TTL> :将键的生存时间设为 ttl 毫秒EXPIREAT <KEY><timestamp> :将键的过期时间设为 timestamp 所指定的秒数时间戳PEXPIREAT <KEY> <timestamp>: 将键的过期时间设为 timestamp 所指定的毫秒数时间戳.

在数据库结构redisDb中的expires字典中保存了数据库中所有键的过期时间,我们称expire这个字典为过期字典。(1)过期字典是一个指针,指向键空间的某个键对象。(2)过期字典的值是一个longlong类型的整数,这个整数保存了键所指向的数据库键的过期时间–一个毫秒级的 UNIX 时间戳。

计算并返回剩余生存时间:ttl命令以秒为单位返回指定键的剩余生存时间。pttl以毫秒返回。两个命令都是通过计算当前时间和过期时间的差值得到剩余生存期的。

移除过期时间:PERSIST 命令可以移除一个键的过期时间

127.0.0.1:6379> set message "hello"OK127.0.0.1:6379> expire message 60(integer) 1127.0.0.1:6379> ttl message(integer) 54127.0.0.1:6379> persist message(integer) 1127.0.0.1:6379> ttl message(integer) -1

5、Redis 为什么是单线程的

因为Redis是基于内存的操作,CPU不是Redis的瓶颈,Redis的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且CPU不会成为瓶颈,那就顺理成章地采用单线程的方案了(毕竟采用多线程会有很多麻烦!)Redis利用队列技术将并发访问变为串行访问
1)绝大部分请求是纯粹的内存操作(非常快速)

2)采用单线程,避免了不必要的上下文切换和竞争条件

3)非阻塞IO优点:
1.速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)
2. 支持丰富数据类型,支持string,list,set,sorted set,hash
3.支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行
4. 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除如何解决redis的并发竞争key问题

同时有多个子系统去set一个key。这个时候要注意什么呢?不推荐使用redis的事务机制。因为我们的生产环境,基本都是redis集群环境,做了数据分片操作。你一个事务中有涉及到多个key操作的时候,这多个key不一定都存储在同一个redis-server上。因此,redis的事务机制,十分鸡肋。
(1)如果对这个key操作,不要求顺序:准备一个分布式锁,大家去抢锁,抢到锁就做set操作即可
(2)如果对这个key操作,要求顺序:分布式锁+时间戳。假设这会系统B先抢到锁,将key1设置为{valueB 3:05}。接下来系统A抢到锁,发现自己的valueA的时间戳早于缓存中的时间戳,那就不做set操作了。以此类推。
(3) 利用队列,将set方法变成串行访问也可以redis遇到高并发,如果保证读写key的一致性
对redis的操作都是具有原子性的,是线程安全的操作,你不用考虑并发问题,redis内部已经帮你处理好并发的问题了。

6、Redis 持久化机制

Redis是一个支持持久化的内存数据库,通过持久化机制把内存中的数据同步到硬盘文件来保证数据持久化。当Redis重启后通过把硬盘文件重新加载到内存,就能达到恢复数据的目的。
实现:单独创建fork()一个子进程,将当前父进程的数据库数据复制到子进程的内存中,然后由子进程写入到临时文件中,持久化的过程结束了,再用这个临时文件替换上次的快照文件,然后子进程退出,内存释放。

RDB是Redis默认的持久化方式。按照一定的时间周期策略把内存的数据以快照的形式保存到硬盘的二进制文件。即Snapshot快照存储,对应产生的数据文件为dump.rdb,通过配置文件中的save参数来定义快照的周期。( 快照可以是其所表示的数据的一个副本,也可以是数据的一个复制品。)

优点:

(1)只有一个文件 dump.rdb,方便持久化。

(2)容灾性好,一个文件可以保存到安全的磁盘。

(3)性能最大化,fork 子进程来完成写操作,让主进程继续处理命令,所以是 IO最大化。使用单独子进程来进行持久化,主进程不会进行任何 IO 操作,保证了 redis的高性能)

(4)相对于数据集大时,比 AOF 的启动效率更高。

缺点:

数据安全性低。RDB 是间隔一段时间进行持久化,如果持久化之间 redis 发生故障,会发生数据丢失。所以这种方式更适合数据要求不严谨的时候

AOF:Redis会将每一个收到的写命令都通过Write函数追加到文件最后,类似于MySQL的binlog。当Redis重启是会通过重新执行文件中保存的写命令来在内存中重建整个数据库的内容。
当两种方式同时开启时,数据恢复Redis会优先选择AOF恢复。

优点:

(1)数据安全,aof 持久化可以配置 appendfsync 属性,有 always,每进行一次命令操作就记录到 aof 文件中一次。

(2)通过 append 模式写文件,即使中途服务器宕机,可以通过 redis-check-aof工具解决数据一致性问题。

(3)AOF 机制的 rewrite 模式。AOF 文件没被 rewrite 之前(文件过大时会对命令进行合并重写),可以删除其中的某些命令(比如误操作的 flushall))

缺点:

(1)AOF 文件比 RDB 文件大,且恢复速度慢。

(2)数据集大的时候,比 rdb 启动效率低。

7、缓存雪崩

我们可以简单的理解为:由于原有缓存失效,新缓存未到期间
(例如:我们设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机。从而形成一系列连锁反应,造成整个系统崩溃。解决办法:
大多数系统设计者考虑用加锁( 最多的解决方案)或者队列的方式保证来保证不会有大量的线程对数据库一次性进行读写,从而避免失效时大量的并发请求落到底层存储系统上。还有一个简单方案就时讲缓存失效时间分散开。

8、缓存击穿

指一个key非常热点,大并发集中对这个key进行访问,当这个key在失效的瞬间,仍然持续的大并发访问就穿破缓存,转而直接请求数据库。解决方案;在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。

9、缓存穿透缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有。这样就导致用户查询的时候,在缓存中找不到,每次都要去数据库再查询一遍,然后返回空(相当于进行了两次无用的查询)。这样请求就绕过缓存直接查数据库,这也是经常提的缓存命中率问题。解决办法;最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。另外也有一个更为简单粗暴的方法,如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。通过这个直接设置的默认值存放到缓存,这样第二次到缓冲中获取就有值了,而不会继续访问数据库,这种办法最简单粗暴。

10、缓存预热缓存预热这个应该是一个比较常见的概念,相信很多小伙伴都应该可以很容易的理解,缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。这样就可以避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!解决思路:1、直接写个缓存刷新页面,上线时手工操作下;2、数据量不大,可以在项目启动的时候自动进行加载;3、定时刷新缓存;

11、Redis实现分布式锁

Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对Redis的连接并不存在竞争关系Redis中可以使用SETNX命令实现分布式锁。
将 key 的值设为 value ,当且仅当 key 不存在。若给定的 key 已经存在,则 SETNX 不做任何动作

解锁:使用 del key 命令就能释放锁解决死锁:1)通过Redis中expire()给锁设定最大持有时间,如果超过,则Redis来帮我们释放锁。2) 使用 setnx key “当前系统时间+锁持有的时间”和getset key “当前系统时间+锁持有的时间”组合的命令就可以实现。

12、Redis有哪些适合的场景?

1)Session共享(单点登录)2)页面缓存3)队列

Reids 在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得 Redis能作为一个很好的消息队列平台来使用。Redis 作为队列使用的操作,就类似于本地程序语言(如 Python)对 list 的 push/pop 操作。4)排行榜/计数器5)发布/订阅

13、Redis 常见性能问题和解决方案:

(1)Master 最好不要写内存快照,如果 Master 写内存快照,save 命令调度 rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/695137
推荐阅读
相关标签
  

闽ICP备14008679号