当前位置:   article > 正文

粒子群算法优化支持向量机(pso-svm)

pso-svm

粒子群优化SVM

其中代码部分经过测试,实测可用

步骤讲解

1、粒子群是优化的SVM的c和g,由于SVM中的c和g难以选择最优的,故选择PSO来优化,寻找最优的粒子点来作为SVM的c和g。
2、从随机解出发,通过迭代寻找最优解,通过适应度来评价解的质量(适应度函数中打印优化的准确度)。
3、PSO初始化为一群随机粒子(随机解),然后通过迭代找到最优解。所有的粒子具有位置(particle_position_vector)和速度(velocity_vector)两个属性。 在每一次迭代中,粒子通过粒子本身所找到的最优解pbest和整个种群目前找到的最优解全局极值gbest来更新。
4、适应度值(实际上是svm的一次运行)
5、下面代码中的iris.csv前三行展示:

在这里插入图片描述

代码

import pandas as pd
import numpy as np
import random
from sklearn.svm import SVC
import matplotlib.pyplot as plt
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score


# 1.读取训练数据集
data = pd.read_csv(r"iris.csv")
x = data.iloc[:, 1:]
Y = data.iloc[:, 0]
# print(x.shape)

# 2.标准化
scaler = StandardScaler()
X = scaler.fit_transform(x)

# 3.初始化参数
W = 0.5                                 # 惯性因子
c1 = 0.2                                # 学习因子
c2 = 0.5                                # 学习因子
n_iterations = 10                       # 迭代次数
n_particles = 50                       # 种群规模

# 4.设置适应度值 输出分类精度得分,返回比较分类结果和实际测得值,可以把分类结果的精度显示在一个混淆矩阵里面
def fitness_function(position):   # 输出
    # 全局极值   svm分类器  核函数gamma  惩罚参数c
    svclassifier = SVC(kernel='rbf', gamma=position[0], C=position[1])
    # 参数gamma和惩罚参数c以实数向量的形式进行编码作为PSO的粒子的位置
    svclassifier.fit(X, Y)
    score = cross_val_score(svclassifier, X, Y, cv=10).mean()                # 交叉验证
    print('分类精度',score)                                                    # 分类精度
    Y_pred = cross_val_predict(svclassifier, X, Y, cv=10)                    # 获取预测值

    # 返回混淆函数,分类误差矩阵,分别是训练中的 测试中的 下面输出错误分类结果
    return confusion_matrix(Y, Y_pred)[0][1] + confusion_matrix(Y, Y_pred)[0][2] + confusion_matrix(Y, Y_pred)[1][0] + \
           confusion_matrix(Y, Y_pred)[1][2] + confusion_matrix(Y, Y_pred)[2][0] + confusion_matrix(Y, Y_pred)[2][1]\
        ,  confusion_matrix(Y, Y_pred)[0][1] + confusion_matrix(Y, Y_pred)[0][2] + confusion_matrix(Y, Y_pred)[1][0] + \
           confusion_matrix(Y, Y_pred)[1][2] + confusion_matrix(Y, Y_pred)[2][0] + confusion_matrix(Y, Y_pred)[2][1]

# 5.粒子图
def plot(position):
    x = []
    y = []
    for i in range(0, len(particle_position_vector)):
        x.append(particle_position_vector[i][0])
        y.append(particle_position_vector[i][1])
    colors = (0, 0, 0)
    plt.scatter(x, y, c = colors, alpha = 0.1)
    # 设置横纵坐标的名称以及对应字体格式
    #font2 = {'family': 'Times New Roman','weight': 'normal', 'size': 20,}
    plt.xlabel('gamma')  # 核函数
    plt.ylabel('C')      # 惩罚函数
    plt.axis([0, 10, 0, 10],)
    plt.gca().set_aspect('equal', adjustable='box') # #设置横纵坐标缩放比例相同,默认的是y轴被压缩了。
    return plt.show()

# 6.初始化粒子位置,进行迭代
# 粒子位置向量
particle_position_vector = np.array([np.array([random.random() * 10, random.random() * 10]) for _ in range(n_particles)])
pbest_position = particle_position_vector    #个体极值等于最初位置
pbest_fitness_value = np.array([float('inf') for _ in range(n_particles)])   #个体极值的适应度值
gbest_fitness_value = np.array([float('inf'), float('inf')])    #全局极值的适应度值
gbest_position = np.array([float('inf'), float('inf')])
velocity_vector = ([np.array([0, 0]) for _ in range(n_particles)])  # 粒子速度
# 迭代更新
iteration = 0
while iteration < n_iterations:
    # plot(particle_position_vector)  #  粒子具体位置
    for i in range(n_particles):   # 对每个粒子进行循环
        fitness_cadidate = fitness_function(particle_position_vector[i])   # 每个粒子的适应度值=适应度函数(每个粒子的具体位置)
        # print("粒子误差", i, "is (training, test)", fitness_cadidate, " At (gamma, c): ",
              # particle_position_vector[i])

        if (pbest_fitness_value[i] > fitness_cadidate[1]):    # 每个粒子的适应度值与其个体极值的适应度值(pbest_fitness_value)作比较,如果更优的话,则更新个体极值,
            pbest_fitness_value[i] = fitness_cadidate[1]
            pbest_position[i] = particle_position_vector[i]

        if (gbest_fitness_value[1] > fitness_cadidate[1]):   # 更新后的每个粒子的个体极值与全局极值(gbest_fitness_value)比较,如果更优的话,则更新全局极值
            gbest_fitness_value = fitness_cadidate
            gbest_position = particle_position_vector[i]

        elif (gbest_fitness_value[1] == fitness_cadidate[1] and gbest_fitness_value[0] > fitness_cadidate[0]):
            gbest_fitness_value = fitness_cadidate
            gbest_position = particle_position_vector[i]

    for i in range(n_particles):  # 更新速度和位置,更新新的粒子的具体位置
        new_velocity = (W * velocity_vector[i]) + (c1 * random.random()) * (
                    pbest_position[i] - particle_position_vector[i]) + (c2 * random.random()) * (
                                   gbest_position - particle_position_vector[i])
        new_position = new_velocity + particle_position_vector[i]
        particle_position_vector[i] = new_position

    iteration = iteration + 1

# 7.输出最终结果
print("全局最优点的位置是 ", gbest_position, "在第", iteration, "步迭代中(训练集,测试集)错误个数:",
      fitness_function(gbest_position))

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/盐析白兔/article/detail/731125
推荐阅读
相关标签
  

闽ICP备14008679号