赞
踩
题目链接:http://codeforces.com/contest/1478/problem/C
Long time ago there was a symmetric array a1,a2,…,a2n consisting of 2n distinct integers. Array a1,a2,…,a2n is called symmetric if for each integer 1≤i≤2n, there exists an integer 1≤j≤2n such that ai=−aj.
For each integer 1≤i≤2n, Nezzar wrote down an integer di equal to the sum of absolute differences from ai to all integers in a, i. e. di=∑2nj=1|ai−aj|.
Now a million years has passed and Nezzar can barely remember the array d and totally forget a. Nezzar wonders if there exists any symmetric array a consisting of 2n distinct integers that generates the array d.
Input
The first line contains a single integer t (1≤t≤105) — the number of test cases.
The first line of each test case contains a single integer n (1≤n≤105).
The second line of each test case contains 2n integers d1,d2,…,d2n (0≤di≤1012).
It is guaranteed that the sum of n over all test cases does not exceed 105.
Output
For each test case, print “YES” in a single line if there exists a possible array a. Otherwise, print “NO”.
You can print letters in any case (upper or lower).
Example
input
6
2
8 12 8 12
2
7 7 9 11
2
7 11 7 11
1
1 1
4
40 56 48 40 80 56 80 48
6
240 154 210 162 174 154 186 240 174 186 162 210
output
YES
NO
NO
NO
NO
YES
存在满足要求的 a 的前提是:
我们可以直接算出绝对值最大的点,就是 d 数组中的最大值 max / (2 *n) ,然后也可以计算出每组点之间的距离的绝对值,如果都能被规定的数整除,并且和是大于 max / (2 *n) 的,那么答案就是 yes 。
#include<bits/stdc++.h> using namespace std; typedef long long ll; int t,n; ll d[200007]; map<ll,ll> mp; ll idx[200007],cnt; int main() { scanf("%d",&t); while(t--) { cnt = 0; int flag = 1; mp.clear(); scanf("%d",&n); for(int i=1;i<=n*2;i++) { scanf("%lld",&d[i]); if(d[i] % 2 != 0) { flag = 0; } if(mp[d[i]] == 0) idx[++cnt] = d[i]; else if(mp[d[i]] == 2) flag = 0; mp[d[i]]++; } if(flag == 0) { printf("NO\n"); continue; } for(int i=1;i<=n*2;i++) { //cout<<"----"<<mp[d[i]]<<endl; if(mp[d[i]] % 2 != 0) { flag = 0; break; } } if(flag == 0) { printf("NO\n"); continue; } sort(idx + 1, idx + 1 + cnt); if(idx[cnt] % (1ll * n * 2) != 0) flag = 0; ll t = idx[cnt] / (n * 2); for(ll i=1;i<cnt;i++) { ll tmp = 1ll * i * 2; if((idx[i + 1] - idx[i]) % tmp != 0) flag = 0; t -= (idx[i + 1] - idx[i]) / tmp; } if(t <= 0 || flag == 0) printf("NO\n"); else printf("YES\n"); } return 0; }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。