赞
踩
--input_model INPUT_MODEL, -w INPUT_MODEL, -m INPUT_MODEL Tensorflow*: a file with a pre-trained model (binary or text .pb file after freezing). Caffe*: a model proto file with model weights Tensorflow *:具有预训练模型的文件(冻结后的二进制或文本.pb文件)。 Caffe *:具有模型权重的模型原型文件 --model_name MODEL_NAME, -n MODEL_NAME Model_name parameter passed to the final create_ir transform. This parameter is used to name a network in a generated IR and output .xml/.bin files. 将Model_name参数传递给最终的create_ir转换。 此参数用于在生成的IR中命名网络并输出.xml / .bin文件。 --output_dir OUTPUT_DIR, -o OUTPUT_DIR Directory that stores the generated IR. By default, it is the directory from where the Model Optimizer is launched. 存储生成的IR的目录。 默认情况下,它是启动模型优化器的目录。 --input_shape INPUT_SHAPE Input shape(s) that should be fed to an input node(s) of the model. Shape is defined as a comma-separated list of integer numbers enclosed in parentheses or square brackets, for example [1,3,227,227] or (1,227,227,3), where the order of dimensions depends on the framework input layout of the model. For example, [N,C,H,W] is used for Caffe* models and [N,H,W,C] for TensorFlow* models. Model Optimizer performs necessary transformations to convert the shape to the layout required by Inference Engine (N,C,H,W). The shape should not contain undefined dimensions (? or -1) and should fit the dimensions defined in the input operation of the graph. If there are multiple inputs in the model, --input_shape should contain definition of shape for each input separated by a comma, for example: [1,3,227,227],[2,4] for a model with two inputs with 4D and 2D shapes. Alternatively, specify shapes with the --input option. 应输入模型的输入节点的输入形状。 形状定义为用逗号分隔的用括号或方括号括起来的整数列表,例如[1,3,227,227]或(1,227,227,3),其中尺寸顺序取决于模型的框架输入布局。 例如,[N,C,H,W]用于Caffe *模型,[N,H,W,C]用于TensorFlow *模型。 模型优化器执行必要的转换,以将形状转换为推理引擎所需的布局(N,C,H,W)。 形状不应包含未定义的尺寸(?或-1),并且应适合在图形的输入操作中定义的尺寸。 如果模型中有多个输入,则--input_shape应包含每个输入的形状定义,并用逗号分隔,例如:[1,3,227,227],[2,4]对于具有两个4D和2D形状的输入的模型 。 或者,使用--input选项指定形状。 --scale SCALE, -s SCALE All input values coming from original network inputs will be divided by this value. When a list of inputs is overridden by the --input parameter, this scale is not applied for any input that does not match with the original input of the model. 来自原始网络输入的所有输入值都将被该值除。 当输入列表被--input参数覆盖时,该比例不适用于与模型原始输入不匹配的任何输入。 --reverse_input_channels Switch the input channels order from RGB to BGR (or vice versa). Applied to original inputs of the model if and only if a number of channels equals 3. Applied after application of --mean_values and --scale_values options, so numbers in --mean_values and --scale_values go in the order of channels used in the original model. 将输入通道顺序从RGB切换到BGR(反之亦然)。 当且仅当通道数等于3时,才应用于模型的原始输入。在应用--mean_values和--scale_values选项后应用,因此--mean_values和--scale_values中的数字按通道中使用的通道顺序排列 原始模型。 --log_level {CRITICAL,ERROR,WARN,WARNING,INFO,DEBUG,NOTSET} --input INPUT Quoted list of comma-separated input nodes names with shapes, data types, and values for freezing. The shape and value are specified as space-separated lists. The data type of input node is specified in braces and can have one of the values: f64 (float64), f32 (float32), f16 (float16), i64 (int64), i32 (int32), u8 (uint8), boolean. For example, use the following format to set input port 0 of the node `node_name1` with the shape [3 4] as an input node and freeze output port 1 of the node `node_name2` with the value [20 15] of the int32 type and shape [2]: "0:node_name1[3 4],node_name2:1[2]{i32}->[20 15]". 用逗号分隔的输入节点名称(带形状,数据类型和冻结值)的带引号的列表。 形状和值指定为以空格分隔的列表。 输入节点的数据类型以大括号指定,并且可以具有以下值之一:f64(float64),f32(float32),f16(float16),i64(int64),i32(int32),u8(uint8),布尔值。 例如,使用以下格式将形状为[3 4]的节点'node_name1'的输入端口0设置为输入节点,并冻结节点int32的值[20 15]的节点`node_name2`的输出端口1。 类型和形状[2]:“ 0:node_name1 [3 4],node_name2:1 [2] {i32}-> [20 15]”。 --output OUTPUT The name of the output operation of the model. For TensorFlow*, do not add :0 to this name. 模型的输出操作的名称。 对于TensorFlow *,请勿在该名称上添加:0。 --mean_values MEAN_VALUES, -ms MEAN_VALUES Mean values to be used for the input image per channel. Values to be provided in the (R,G,B) or [R,G,B] format. Can be defined for desired input of the model, for example: "--mean_values data[255,255,255],info[255,255,255]". The exact meaning and order of channels depend on how the original model was trained. 每个通道用于输入图像的平均值。 以(R,G,B)或[R,G,B]格式提供的值。 可以为模型的所需输入定义,例如:“-mean_values data [255,255,255],info [255,255,255]”。 通道的确切含义和顺序取决于原始模型的训练方式。 --scale_values SCALE_VALUES Scale values to be used for the input image per channel. Values are provided in the (R,G,B) or [R,G,B] format. Can be defined for desired input of the model, for example: "--scale_values data[255,255,255],info[255,255,255]". The exact meaning and order of channels depend on how the original model was trained. 每个通道用于输入图像的比例值。 值以(R,G,B)或[R,G,B]格式提供。 可以为模型的所需输入定义,例如:“-scale_values data [255,255,255],info [255,255,255]”。 通道的确切含义和顺序取决于原始模型的训练方式。 --data_type {FP16,FP32,half,float} Data type for all intermediate tensors and weights. If original model is in FP32 and --data_type=FP16 is specified, all model weights and biases are quantized to FP16. 所有中间张量和权重的数据类型。 如果原始模型位于FP32中,并且指定了--data_type = FP16,则所有模型权重和偏差都将量化为FP16。 --disable_fusing Turn off fusing of linear operations to Convolution 关闭将线性运算与卷积的融合 --disable_resnet_optimization Turn off resnet optimization 关闭Resnet优化 --finegrain_fusing FINEGRAIN_FUSING Regex for layers/operations that won't be fused. Example: --finegrain_fusing Convolution1,.*Scale.* 正则表达式用于不会融合的层/操作。 示例:--finegrain_fusing卷积1,。* Scale。* --disable_gfusing Turn off fusing of grouped convolutions 关闭分组卷积的融合 --enable_concat_optimization Turn on Concat optimization. 打开Concat优化。 --move_to_preprocess Move mean values to IR preprocess section 将平均值移至IR预处理部分 --extensions EXTENSIONS Directory or a comma separated list of directories with extensions. To disable all extensions including those that are placed at the default location, pass an empty string. 目录或以逗号分隔的带有扩展名的目录列表。 要禁用所有扩展名,包括放置在默认位置的扩展名,请传递一个空字符串。 --batch BATCH, -b BATCH Input batch size 输入批量 --version Version of Model Optimizer 模型优化器的版本 --silent Prevent any output messages except those that correspond to log level equals ERROR, that can be set with the following option: --log_level. By default,log level is already ERROR. 防止使用与以下日志选项对应的输出消息(与日志级别对应的消息等于ERROR除外)进行设置:--log_level。 默认情况下,日志级别已为ERROR。 --freeze_placeholder_with_value fREEZE_PLACEHOLDER_WITH_VALUE Replaces input layer with constant node with provided value, for example: "node_name->True". It will be DEPRECATED in future releases. Use --input option to specify a value for freezing. FREEZE_PLACEHOLDER_WITH_VALUE用具有提供值的恒定节点替换输入层,例如:“ node_name-> True”。 在将来的版本中将不再使用。 使用--input选项指定冻结值。 --generate_deprecated_IR_V7 Force to generate deprecated IR V7 with layers from old IR specification. 强制生成具有旧IR规范中的图层的已弃用的IR V7。 --static_shape Enables IR generation for fixed input shape (folding `ShapeOf` operations and shape-calculating sub-graphs to `Constant`). Changing model input shape using the Inference Engine API in runtime may fail for such an IR. 为固定的输入形状启用IR生成(将“ ShapeOf”操作和形状计算子图折叠为“ Constant”)。 对于此类IR,在运行时使用Inference Engine API更改模型输入形状可能会失败 --keep_shape_ops The option is ignored. Expected behavior is enabled by default. 该选项被忽略。 默认情况下启用预期行为。 --disable_weights_compression Disable compression and store weights with original precision. 禁用压缩并以原始精度存储重量 --progress Enable model conversion progress display. 启用模型转换进度显示。 --stream_output Switch model conversion progress display to a multiline mode. 将模型转换进度显示切换到多行模式。 --transformations_config TRANSFORMATIONS_CONFIG Use the configuration file with transformations description. TRANSFORMATIONS_CONFIG将配置文件与转换说明一起使用。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。