当前位置:   article > 正文

python 爬取贝壳网小区名称_Python爬虫实战:爬取贝壳网二手房40000条数据

完全爬虫所有贝壳小区信息

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理

以下文章来源于啤酒就辣条 ,作者啤酒就辣条

一、网页分析

爬取贝壳网石家庄二手房信息,先打开链接

https://sjz.ke.com/ershoufang/。

d25db2c8bca902b694346ef730bb7f2c.png

不添加筛选条件,发现总共有42817套房子。我们点击第二页,再查看链接变成了https://sjz.ke.com/ershoufang/pg2/。所以,可发现/pg{i},i就是页码。

2a6493c48a2e47bcc2b534edacd2a3c7.png

所以最多可爬取3000套房产信息,距离上面给出的4万多差的还很远,于是尝试把pg{i}的那个i人为改变一下,点击回车请求一下。

返回房产信息数据都一样。都是第100页的信息,于是乎,得出结论。通过贝壳网web端,查看某一条件下的房产信息,最多可以查看3000套。

1bbf67c736b2b2e2d422cb226d1aec93.png

所以呢,我们增加一些条件,比如,满五唯一,2室的。请求之~

063da343d20ce9bab0a13f3e2bd2bae7.png

发现链接变成了https://sjz.ke.com/ershoufang/pg2mw1l2/。mw1l2这个玩意应该筛选条件。看到只有2399套,欧克,咱们就爬它了。

二、撸起袖子写代码

麻雀虽小五脏俱全,本爬虫设计三个部分,爬取,解析,储存。

爬取

爬取利用requests库,比python内置库urllib要好用很多。

importrequestsdefget_a_page(url):

result=requests.get(url)print(result.text)if __name__ == '__main__':for i in range(1, 101):

get_a_page(f'https://sjz.ke.com/ershoufang/pg{i}mw1l2/')

for循环打印返回数据,发现没问题。其实i循环到81就好了,毕竟咱们知道了,只有不到2400套嘛。

解析

解析使用pyquery ,这个库使用起来类似于Jquery。完整API,https://pythonhosted.org/pyquery/api.html。还有一个解析库`bs4,下次再尝试。

5987ca72f0d5a675151810180c04875c.png

在这里插入图片描述

发现读取如图所示ul里面一个div就可以拿到我们想要的数据。

importrequestsfrom pyquery importPyQuery as pqimportjsondefget_a_page(url):

result=requests.get(url)

doc=pq(result.text)

ul= doc('.sellListContent')

divs= ul.children('.clear .info.clear').items()for div indivs:

count+= 1title= div.children('.title a').text()

place= div.children('.address .flood .positionInfo a').text()

msg= div.children('.address .houseInfo').text()

price= div.children('.address .priceInfo .totalPrice span').text()

per_meter= div.children('.address .priceInfo .unitPrice').attr('data-price')

dict={'title': title,'place': place,'msg': msg,'price': price,'per_meter': per_meter

}print(str(count) + ':' + json.dumps(dict, ensure_ascii=False))

代码如上,pyquery 的children方法是查找子标签,find方法是找子孙标签,此处我们只需要找下一代就好。然后通过text找到标签所包含的文本。attr是获取属性内容的,因为那个per_meter从属性中获取比较简单,标签中的内容还包含了“元/平米”。

储存

本次我们直接储存到csv中,一种类似于excel的文件格式。利用的是pandas库。

完整代码如下:

importrequestsfrom pyquery importPyQuery as pqimportjsonimportpandas as pd

columns= ['title', 'msg', 'price', 'per_meter']#爬取某网页

defget_a_page(url):

result=requests.get(url)

doc=pq(result.text)

ul= doc('.sellListContent')

divs= ul.children('.clear .info.clear').items()

count=0

titles=[]

places=[]

msgs=[]

prices=[]

per_meters=[]for div indivs:

count+= 1title= div.children('.title a').text()

place= div.children('.address .flood .positionInfo a').text()

msg= div.children('.address .houseInfo').text()

price= div.children('.address .priceInfo .totalPrice span').text()

per_meter= div.children('.address .priceInfo .unitPrice').attr('data-price')

dict={'title': title,'place': place,'msg': msg,'price': price,'per_meter': per_meter

}

titles.append(title)

places.append(place)

msgs.append(msg)

prices.append(price)

per_meters.append(per_meter)print(str(count) + ':' + json.dumps(dict, ensure_ascii=False))

datas={'title': titles,'place': places,'msg': msgs,'price': prices,'per_meter': per_meters

}

df= pd.DataFrame(data=datas, columns=columns)

df.to_csv('sjz.csv', mode='a', index=False, header=False)if __name__ == '__main__':for i in range(1, 101):

get_a_page(f'https://sjz.ke.com/ershoufang/pg{i}mw1l2/')

多进程

由于get_a_page函数要运行100次,有点小慢,所以利用多进程加快速度,这部分代码,请直接copy。

将主函数改成如下所示

from multiprocessing.pool importPoolif __name__ == '__main__':

pool= Pool(5)

group= ([f'https://sjz.ke.com/ershoufang/pg{x}mw1l2/'for x in range(1, 101)])

pool.map(get_a_page,group)

pool.close()

pool.join()

三、结束

查看下效果:

72c21e6ed3102ab84254694f502e189c.png

效果还可以。有人会说,为什么不把msg信息拆分一下,分别储存楼层、几室几厅、建筑年代等等多好。刚开始,我是那么做的,结果发现这个msg数据那几项不是必填项,有的建筑年代、楼层什么的房主不填写,索性就整个拿过来了。

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/192581
推荐阅读
相关标签
  

闽ICP备14008679号