赞
踩
本项目通过textcnn卷积神经网络实现对文本情感分析识别,由python 3.6.5+Pytorch训练所得。
Training and evaluating... Epoch: 1 Iter: 0, Train Loss: 1.4, Train Acc: 10.94%, Val Loss: 1.4, Val Acc: 13.82%, Time: 0:00:02 * Iter: 100, Train Loss: 0.8, Train Acc: 70.31%, Val Loss: 0.74, Val Acc: 73.88%, Time: 0:00:33 * Iter: 200, Train Loss: 0.68, Train Acc: 71.88%, Val Loss: 0.71, Val Acc: 73.88%, Time: 0:01:05 Iter: 300, Train Loss: 0.68, Train Acc: 75.00%, Val Loss: 0.66, Val Acc: 74.54%, Time: 0:01:37 * Iter: 400, Train Loss: 0.59, Train Acc: 79.69%, Val Loss: 0.62, Val Acc: 74.97%, Time: 0:02:06 * Iter: 500, Train Loss: 0.56, Train Acc: 79.69%, Val Loss: 0.6, Val Acc: 76.71%, Time: 0:02:37 * Iter: 600, Train Loss: 0.64, Train Acc: 78.12%, Val Loss: 0.62, Val Acc: 75.84%, Time: 0:03:08 Iter: 700, Train Loss: 0.53, Train Acc: 79.69%, Val Loss: 0.57, Val Acc: 79.00%, Time: 0:03:39 * Iter: 800, Train Loss: 0.67, Train Acc: 76.56%, Val Loss: 0.56, Val Acc: 78.56%, Time: 0:04:08 Iter: 900, Train Loss: 0.71, Train Acc: 65.62%, Val Loss: 0.54, Val Acc: 78.24%, Time: 0:04:39 Iter: 1000, Train Loss: 0.64, Train Acc: 68.75%, Val Loss: 0.52, Val Acc: 79.43%, Time: 0:05:10 * Epoch: 2 Iter: 1100, Train Loss: 0.53, Train Acc: 82.81%, Val Loss: 0.51, Val Acc: 80.74%, Time: 0:05:41 * Iter: 1200, Train Loss: 0.61, Train Acc: 79.69%, Val Loss: 0.49, Val Acc: 81.94%, Time: 0:06:12 * Iter: 1300, Train Loss: 0.5, Train Acc: 81.25%, Val Loss: 0.48, Val Acc: 80.85%, Time: 0:06:43 Iter: 1400, Train Loss: 0.42, Train Acc: 81.25%, Val Loss: 0.46, Val Acc: 82.15%, Time: 0:07:14 * Iter: 1500, Train Loss: 0.49, Train Acc: 78.12%, Val Loss: 0.46, Val Acc: 81.50%, Time: 0:07:45 Iter: 1600, Train Loss: 0.43, Train Acc: 81.25%, Val Loss: 0.42, Val Acc: 83.57%, Time: 0:08:16 * Iter: 1700, Train Loss: 0.42, Train Acc: 84.38%, Val Loss: 0.43, Val Acc: 84.98%, Time: 0:08:47 * Iter: 1800, Train Loss: 0.37, Train Acc: 84.38%, Val Loss: 0.42, Val Acc: 83.13%, Time: 0:09:18 Iter: 1900, Train Loss: 0.52, Train Acc: 81.25%, Val Loss: 0.41, Val Acc: 85.20%, Time: 0:09:49 * Iter: 2000, Train Loss: 0.83, Train Acc: 62.50%, Val Loss: 0.42, Val Acc: 82.26%, Time: 0:10:20 Iter: 2100, Train Loss: 0.55, Train Acc: 76.56%, Val Loss: 0.4, Val Acc: 86.72%, Time: 0:10:52 * Epoch: 3 Iter: 2200, Train Loss: 0.4, Train Acc: 84.38%, Val Loss: 0.37, Val Acc: 85.64%, Time: 0:11:22 Iter: 2300, Train Loss: 0.4, Train Acc: 85.94%, Val Loss: 0.35, Val Acc: 85.09%, Time: 0:11:53 Iter: 2400, Train Loss: 0.36, Train Acc: 84.38%, Val Loss: 0.33, Val Acc: 88.47%, Time: 0:12:24 * Iter: 2500, Train Loss: 0.4, Train Acc: 82.81%, Val Loss: 0.36, Val Acc: 86.40%, Time: 0:12:53 Iter: 2600, Train Loss: 0.43, Train Acc: 81.25%, Val Loss: 0.32, Val Acc: 88.57%, Time: 0:13:24 * Iter: 2700, Train Loss: 0.4, Train Acc: 82.81%, Val Loss: 0.32, Val Acc: 88.47%, Time: 0:13:56 Iter: 2800, Train Loss: 0.28, Train Acc: 90.62%, Val Loss: 0.3, Val Acc: 89.12%, Time: 0:14:27 * Iter: 2900, Train Loss: 0.23, Train Acc: 93.75%, Val Loss: 0.29, Val Acc: 90.10%, Time: 0:14:58 * Iter: 3000, Train Loss: 0.34, Train Acc: 82.81%, Val Loss: 0.31, Val Acc: 87.92%, Time: 0:15:29 Iter: 3100, Train Loss: 0.25, Train Acc: 92.19%, Val Loss: 0.29, Val Acc: 90.86%, Time: 0:16:00 * Iter: 3200, Train Loss: 0.35, Train Acc: 87.50%, Val Loss: 0.26, Val Acc: 90.97%, Time: 0:16:31 * Epoch: 4 Iter: 3300, Train Loss: 0.26, Train Acc: 92.19%, Val Loss: 0.23, Val Acc: 92.06%, Time: 0:17:02 * Iter: 3400, Train Loss: 0.32, Train Acc: 89.06%, Val Loss: 0.23, Val Acc: 92.17%, Time: 0:17:33 * Iter: 3500, Train Loss: 0.22, Train Acc: 92.19%, Val Loss: 0.23, Val Acc: 91.62%, Time: 0:18:04 Iter: 3600, Train Loss: 0.27, Train Acc: 90.62%, Val Loss: 0.22, Val Acc: 92.27%, Time: 0:18:36 * Iter: 3700, Train Loss: 0.26, Train Acc: 93.75%, Val Loss: 0.26, Val Acc: 90.97%, Time: 0:19:08 Iter: 3800, Train Loss: 0.27, Train Acc: 89.06%, Val Loss: 0.23, Val Acc: 92.60%, Time: 0:19:39 * Iter: 3900, Train Loss: 0.38, Train Acc: 84.38%, Val Loss: 0.2, Val Acc: 92.71%, Time: 0:20:10 * Iter: 4000, Train Loss: 0.48, Train Acc: 85.94%, Val Loss: 0.19, Val Acc: 93.80%, Time: 0:20:41 * Iter: 4100, Train Loss: 0.25, Train Acc: 90.62%, Val Loss: 0.22, Val Acc: 92.60%, Time: 0:21:13 Iter: 4200, Train Loss: 0.19, Train Acc: 92.19%, Val Loss: 0.18, Val Acc: 94.99%, Time: 0:21:44 * Iter: 4300, Train Loss: 0.27, Train Acc: 90.62%, Val Loss: 0.18, Val Acc: 94.45%, Time: 0:22:15 Epoch: 5 Iter: 4400, Train Loss: 0.15, Train Acc: 96.88%, Val Loss: 0.15, Val Acc: 95.32%, Time: 0:22:46 * Iter: 4500, Train Loss: 0.21, Train Acc: 92.19%, Val Loss: 0.18, Val Acc: 93.69%, Time: 0:23:15 Iter: 4600, Train Loss: 0.11, Train Acc: 96.88%, Val Loss: 0.16, Val Acc: 95.32%, Time: 0:23:47 Iter: 4700, Train Loss: 0.15, Train Acc: 93.75%, Val Loss: 0.14, Val Acc: 95.21%, Time: 0:24:18 Iter: 4800, Train Loss: 0.18, Train Acc: 95.31%, Val Loss: 0.15, Val Acc: 95.87%, Time: 0:24:49 * Iter: 4900, Train Loss: 0.17, Train Acc: 95.31%, Val Loss: 0.17, Val Acc: 94.45%, Time: 0:25:21 Iter: 5000, Train Loss: 0.24, Train Acc: 92.19%, Val Loss: 0.16, Val Acc: 95.65%, Time: 0:25:52 Iter: 5100, Train Loss: 0.19, Train Acc: 95.31%, Val Loss: 0.13, Val Acc: 95.87%, Time: 0:26:23 * Iter: 5200, Train Loss: 0.15, Train Acc: 95.31%, Val Loss: 0.15, Val Acc: 95.32%, Time: 0:26:54 Iter: 5300, Train Loss: 0.21, Train Acc: 90.62%, Val Loss: 0.14, Val Acc: 96.30%, Time: 0:27:26 * Epoch: 6 Iter: 5400, Train Loss: 0.13, Train Acc: 95.31%, Val Loss: 0.15, Val Acc: 94.12%, Time: 0:28:02 Iter: 5500, Train Loss: 0.21, Train Acc: 98.44%, Val Loss: 0.12, Val Acc: 95.97%, Time: 0:28:35 Iter: 5600, Train Loss: 0.21, Train Acc: 93.75%, Val Loss: 0.16, Val Acc: 94.89%, Time: 0:29:12
https://download.csdn.net/download/qq_42279468/20398625
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。