赞
踩
全球数据科学领域顶级会议KDD 2022大奖公布,阿里巴巴达摩院团队斩获应用科学方向“最佳论文奖”,这是中国企业首次获得该重磅奖项。
KDD(ACM SIGKDD)是数据挖掘领域历史最悠久、规模最大的国际顶级学术会议,也是全球录取率最低的计算机顶会之一,在知识发现、数据挖掘、人工智能等领域具有重大影响力。
KDD会议分为研究和应用科学两个方向,本年度共收到2448篇投稿,仅接受449篇。阿里巴巴今年共有34篇论文入选,是全球入选论文数量最多的企业之一,并获得了大会应用科学方向唯一的“最佳论文奖”。
历年荣摘该桂冠的包括来自谷歌、亚马逊、卡内基梅隆大学等海外知名机构的研究团队,国内企业此前从未获得该奖。
阿里巴巴达摩院获奖论文《FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient Package for Federated Graph Learning》聚焦联邦学习中应用广泛且技术复杂的联邦图学习方向,针对现有框架及算法库对图数据支持有限的情况,提出了包含丰富数据集及创新算法的易用平台,为该领域后续研究奠定坚实基础。
KDD评价,该工作推动了图联邦学习的发展,并树立了优秀平台工作的榜样。
图(graph)是一种用于描述对象间关系的数据类型,它由节点(node)和边(edge)两部分组成,在表示复杂关系方面具有很大优势。
近年来,基于图结构的深度学习方法——图神经网络(graph neural networks),得到了学术界和工业界的广泛关注并取得了显著的成功。
而联邦学习是隐私保护计算主流技术之一,它实现了“数据不动模型动”,能让用户在数据不出本地的基础上,通过交换模型参数或中间结果的方式,在云端联合训练,让多方用户都能完成模型训练。
联邦图学习是联邦学习领域最前沿的方向之一,研究在保护各方图数据隐私的前提下,共同进行复杂的图神经网络模型训练,相关技术在科学探索、知识表示、互联网、金融等科研及工业领域有广阔需求:
药企联合训练新药分子式预测模型
但现有联邦学习框架和库对图数据的支持相对有限,提供的现成图数据集、图神经网络架构、专门针对图学习设计的联邦学习算法等也还不够全面,难以基于已有工作建立联邦图学习的基准。
关注到外界对联邦图学习的需求后,阿里巴巴达摩院智能计算实验室提出并基于联邦学习框架FederatedScope实现了针对图学习的库FederatedScope-GNN,并以此工作形成了本次获奖论文。
首先,FederatedScope-GNN针对图学习提供了DataZoo和ModelZoo,分别为用户提供了丰富多样的联邦图数据集和相应模型与算法。
基于事件驱动的底层框架来实现联邦图学习算法FedSage+
其次,针对联邦图学习对超参数敏感的现象,FederatedScope-GNN还实现了模型调优相关的模块,包括多保真度的Successive Halving Algorithm和新近提出的联邦超参优化算法FedEx,以及针对联邦异质任务的个性化。
一个个性化图神经网络示例,其中各参与方仅共享模型的一部分参数
最后,考虑到FedSage+这类联邦图学习算法交换节点嵌入式表示等信息的特点,FederatedScope-GNN提供了丰富的隐私评估算法对算法在隐私保护方面的能力进行检验。
基于上述功能和特性,该获奖论文建立了全面丰富的联邦图学习基准,包含不同图上任务、不同图神经网络架构、不同的联邦优化算法等,为该领域后续的研究奠定了坚实基础。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。