当前位置:   article > 正文

使用LSTM进行情感分析_lstm+gensim情感分析

lstm+gensim情感分析

案例流程

1) 制作词向量,可以使用gensim这个库,也可以直接用现成的
2) 词和ID的映射,常规套路了
3) 构建RNN网络架构
4) 训练我们的模型
5) 试试咋样
  • 1
  • 2
  • 3
  • 4
  • 5

导入数据

首先,我们需要去创建词向量。为了简单起见,我们使用训练好的模型来创建。

作为该领域的一个最大玩家,Google 已经帮助我们在大规模数据集上训练出来了 Word2Vec 模型,包括 1000 亿个不同的词!在这个模型中,谷歌能创建 300 万个词向量,每个向量维度为 300。

在理想情况下,我们将使用这些向量来构建模型,但是因为这个单词向量矩阵相当大(3.6G),我们用另外一个现成的小一些的,该矩阵由 GloVe 进行训练得到。矩阵将包含 400000 个词向量,每个向量的维数为 50。

我们将导入两个不同的数据结构,一个是包含 400000 个单词的 Python 列表,一个是包含所有单词向量值得 400000*50 维的嵌入矩阵。

import numpy as np
wordsList = np.load('./training_data/wordsList.npy')
print('Loaded the word list!')
wordsList = wordsList.tolist() #Originally loaded as numpy array
wordsList = [word.decode('UTF-8') for word in wordsList] #Encode words as UTF-8
wordVectors = np.load('./training_data/wordVectors.npy')
print ('Loaded the word vectors!')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
Loaded the word list!
Loaded the word vectors!
  • 1
  • 2
print(len(wordsList))
print(wordVectors.shape)
  • 1
  • 2
400000
(400000, 50)
  • 1
  • 2

我们也可以在词库中搜索单词,比如 “baseball”,然后可以通过访问嵌入矩阵来得到相应的向量,如下:

baseballIndex = wordsList.index('baseball')
wordVectors[baseballIndex]
  • 1
  • 2
array([-1.93270004,  1.04209995, -0.78514999,  0.91033   ,  0.22711   ,
       -0.62158   , -1.64929998,  0.07686   , -0.58679998,  0.058831  ,
        0.35628   ,  0.68915999, -0.50598001,  0.70472997,  1.26639998,
       -0.40031001, -0.020687  ,  0.80862999, -0.90565997, -0.074054  ,
       -0.87674999, -0.62910002, -0.12684999,  0.11524   , -0.55685002,
       -1.68260002, -0.26291001,  0.22632   ,  0.713     , -1.08280003,
        2.12310004,  0.49869001,  0.066711  , -0.48225999, -0.17896999,
        0.47699001,  0.16384   ,  0.16537   , -0.11506   , -0.15962   ,
       -0.94926   , -0.42833   , -0.59456998,  1.35660005, -0.27506   ,
        0.19918001, -0.36008   ,  0.55667001, -0.70314997,  0.17157   ], dtype=float32)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

现在我们有了向量,我们的第一步就是输入一个句子,然后构造它的向量表示。假设我们现在的输入句子是 “I thought the movie was incredible and inspiring”。为了得到词向量,我们可以使用 TensorFlow 的嵌入函数。这个函数有两个参数,一个是嵌入矩阵(在我们的情况下是词向量矩阵),另一个是每个词对应的索引。

import tensorflow as tf
maxSeqLength = 10 #Maximum length of sentence
numDimensions = 300 #Dimensions for each word vector
firstSentence = np.zeros((maxSeqLength), dtype='int32')
firstSentence[0] = wordsList.index("i")
firstSentence[1] = wordsList.index("thought")
firstSentence[2] = wordsList.index("the")
firstSentence[3] = wordsList.index("movie")
firstSentence[4] = wordsList.index("was")
firstSentence[5] = wordsList.index("incredible")
firstSentence[6] = wordsList.index("and")
firstSentence[7] = wordsList.index("inspiring")
#firstSentence[8] and firstSentence[9] are going to be 0
print(firstSentence.shape)
print(firstSentence) #Shows the row index for each word
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
(10,)
[    41    804 201534   1005     15   7446      5  13767      0      0]
  • 1
  • 2

数据管道如下图所示:

在这里插入图片描述
输出数据是一个 10*50 的词矩阵,其中包括 10 个词,每个词的向量维度是 50。就是去找到这些词对应的向量

with tf.Session() as sess:
    print(tf.nn.embedding_lookup(wordVectors,firstSentence).eval().shape)
  • 1
  • 2
(10, 50)
  • 1

在整个训练集上面构造索引之前,我们先花一些时间来可视化我们所拥有的数据类型。这将帮助我们去决定如何设置最大序列长度的最佳值。在前面的例子中,我们设置了最大长度为 10,但这个值在很大程度上取决于你输入的数据。

训练集我们使用的是 IMDB 数据集。这个数据集包含 25000 条电影数据,其中 12500 条正向数据,12500 条负向数据。这些数据都是存储在一个文本文件中,首先我们需要做的就是去解析这个文件。正向数据包含在一个文件中,负向数据包含在另一个文件中。

from os import listdir
from os.path import isfile, join
positiveFiles = ['./training_data/positiveReviews/' + f for f in listdir('./training_data/positiveReviews/') if isfile(join('./training_data/positiveReviews/', f))]
negativeFiles = ['./training_data/negativeReviews/' + f for f in listdir('./training_data/negativeReviews/') if isfile(join('./training_data/negativeReviews/', f))]
numWords = []
for pf in positiveFiles:
    with open(pf, "r", encoding='utf-8') as f:
        line=f.readline()
        counter = len(line.split())
        numWords.append(counter)       
print('Positive files finished')

for nf in negativeFiles:
    with open(nf, "r", encoding='utf-8') as f:
        line=f.readline()
        counter = len(line.split())
        numWords.append(counter)  
print('Negative files finished')

numFiles = len(numWords)
print('The total number of files is', numFiles)
print('The total number of words in the files is', sum(numWords))
print('The average number of words in the files is', sum(numWords)/len(numWords))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
Positive files finished
Negative files finished
The total number of files is 25000
The total number of words in the files is 5844680
The average number of words in the files is 233.7872
  • 1
  • 2
  • 3
  • 4
  • 5
import matplotlib.pyplot as plt
%matplotlib inline
plt.hist(numWords, 50)
plt.xlabel('Sequence Length')
plt.ylabel('Frequency')
plt.axis([0, 1200, 0, 8000])
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

在这里插入图片描述

从直方图和句子的平均单词数,我们认为将句子最大长度设置为 250 是可行的。

maxSeqLength = 250
  • 1

接下来,让我们看看如何将单个文件中的文本转换成索引矩阵,比如下面的代码就是文本中的其中一个评论。

fname = positiveFiles[3] #Can use any valid index (not just 3)
with open(fname) as f:
    for lines in f:
        print(lines)
        exit
  • 1
  • 2
  • 3
  • 4
  • 5
This is easily the most underrated film inn the Brooks cannon. Sure, its flawed. It does not give a realistic view of homelessness (unlike, say, how Citizen Kane gave a realistic view of lounge singers, or Titanic gave a realistic view of Italians YOU IDIOTS). Many of the jokes fall flat. But still, this film is very lovable in a way many comedies are not, and to pull that off in a story about some of the most traditionally reviled members of society is truly impressive. Its not The Fisher King, but its not crap, either. My only complaint is that Brooks should have cast someone else in the lead (I love Mel as a Director and Writer, not so much as a lead).
  • 1

接下来,我们将它转换成一个索引矩阵。

# 删除标点符号、括号、问号等,只留下字母数字字符
import re
strip_special_chars = re.compile("[^A-Za-z0-9 ]+")

def cleanSentences(string):
    string = string.lower().replace("<br />", " ")
    return re.sub(strip_special_chars, "", string.lower())
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
firstFile = np.zeros((maxSeqLength), dtype='int32')
with open(fname) as f:
    indexCounter = 0
    line=f.readline()
    cleanedLine = cleanSentences(line)
    split = cleanedLine.split()
    for word in split:
        try:
            firstFile[indexCounter] = wordsList.index(word)
        except ValueError:
            firstFile[indexCounter] = 399999 #Vector for unknown words
        indexCounter = indexCounter + 1
firstFile
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
array([    37,     14,   2407, 201534,     96,  37314,    319,   7158,
       201534,   6469,   8828,   1085,     47,   9703,     20,    260,
           36,    455,      7,   7284,   1139,      3,  26494,   2633,
          203,    197,   3941,  12739,    646,      7,   7284,   1139,
            3,  11990,   7792,     46,  12608,    646,      7,   7284,
         1139,      3,   8593,     81,  36381,    109,      3, 201534,
         8735,    807,   2983,     34,    149,     37,    319,     14,
          191,  31906,      6,      7,    179,    109,  15402,     32,
           36,      5,      4,   2933,     12,    138,      6,      7,
          523,     59,     77,      3, 201534,     96,   4246,  30006,
          235,      3,    908,     14,   4702,   4571,     47,     36,
       201534,   6429,    691,     34,     47,     36,  35404,    900,
          192,     91,   4499,     14,     12,   6469,    189,     33,
         1784,   1318,   1726,      6, 201534,    410,     41,    835,
        10464,     19,      7,    369,      5,   1541,     36,    100,
          181,     19,      7,    410,      0,      0,      0,      0,
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

现在,我们用相同的方法来处理全部的 25000 条评论。我们将导入电影训练集,并且得到一个 25000 * 250 的矩阵。这是一个计算成本非常高的过程,可以直接使用理好的索引矩阵文件。

# ids = np.zeros((numFiles, maxSeqLength), dtype='int32')
# fileCounter = 0
# for pf in positiveFiles:
#    with open(pf, "r") as f:
#        indexCounter = 0
#        line=f.readline()
#        cleanedLine = cleanSentences(line)
#        split = cleanedLine.split()
#        for word in split:
#            try:
#                ids[fileCounter][indexCounter] = wordsList.index(word)
#            except ValueError:
#                ids[fileCounter][indexCounter] = 399999 #Vector for unkown words
#            indexCounter = indexCounter + 1
#            if indexCounter >= maxSeqLength:
#                break
#        fileCounter = fileCounter + 1 

# for nf in negativeFiles:
#    with open(nf, "r") as f:
#        indexCounter = 0
#        line=f.readline()
#        cleanedLine = cleanSentences(line)
#        split = cleanedLine.split()
#        for word in split:
#            try:
#                ids[fileCounter][indexCounter] = wordsList.index(word)
#            except ValueError:
#                ids[fileCounter][indexCounter] = 399999 #Vector for unkown words
#            indexCounter = indexCounter + 1
#            if indexCounter >= maxSeqLength:
#                break
#        fileCounter = fileCounter + 1 
# #Pass into embedding function and see if it evaluates. 

# np.save('idsMatrix', ids)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
ids = np.load('./training_data/idsMatrix.npy')
  • 1

辅助函数

from random import randint

def getTrainBatch():
    labels = []
    arr = np.zeros([batchSize, maxSeqLength])
    for i in range(batchSize):
        if (i % 2 == 0): 
            num = randint(1,11499)
            labels.append([1,0])
        else:
            num = randint(13499,24999)
            labels.append([0,1])
        arr[i] = ids[num-1:num]
    return arr, labels

def getTestBatch():
    labels = []
    arr = np.zeros([batchSize, maxSeqLength])
    for i in range(batchSize):
        num = randint(11499,13499)
        if (num <= 12499):
            labels.append([1,0])
        else:
            labels.append([0,1])
        arr[i] = ids[num-1:num]
    return arr, labels
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

RNN Model

现在,我们可以开始构建我们的 TensorFlow 图模型。首先,我们需要去定义一些超参数,比如批处理大小,LSTM的单元个数,分类类别和训练次数。

batchSize = 24
lstmUnits = 64
numClasses = 2
iterations = 50000
  • 1
  • 2
  • 3
  • 4

与大多数 TensorFlow 图一样,现在我们需要指定两个占位符,一个用于数据输入,另一个用于标签数据。对于占位符,最重要的一点就是确定好维度。

标签占位符代表一组值,每一个值都为 [1,0] 或者 [0,1],这个取决于数据是正向的还是负向的。输入占位符,是一个整数化的索引数组。

在这里插入图片描述

import tensorflow as tf
tf.reset_default_graph()

labels = tf.placeholder(tf.float32, [batchSize, numClasses])
input_data = tf.placeholder(tf.int32, [batchSize, maxSeqLength])
  • 1
  • 2
  • 3
  • 4
  • 5

一旦,我们设置了我们的输入数据占位符,我们可以调用
tf.nn.embedding_lookup() 函数来得到我们的词向量。该函数最后将返回一个三维向量,第一个维度是批处理大小,第二个维度是句子长度,第三个维度是词向量长度。更清晰的表达,如下图所示:

caption

data = tf.Variable(tf.zeros([batchSize, maxSeqLength, numDimensions]),dtype=tf.float32)
data = tf.nn.embedding_lookup(wordVectors,input_data)
  • 1
  • 2

现在我们已经得到了我们想要的数据形式,那么揭晓了我们看看如何才能将这种数据形式输入到我们的 LSTM 网络中。首先,我们使用 tf.nn.rnn_cell.BasicLSTMCell 函数,这个函数输入的参数是一个整数,表示需要几个 LSTM 单元。这是我们设置的一个超参数,我们需要对这个数值进行调试从而来找到最优的解。然后,我们会设置一个 dropout 参数,以此来避免一些过拟合。

最后,我们将 LSTM cell 和三维的数据输入到 tf.nn.dynamic_rnn ,这个函数的功能是展开整个网络,并且构建一整个 RNN 模型。

lstmCell = tf.contrib.rnn.BasicLSTMCell(lstmUnits)
lstmCell = tf.contrib.rnn.DropoutWrapper(cell=lstmCell, output_keep_prob=0.75)
value, _ = tf.nn.dynamic_rnn(lstmCell, data, dtype=tf.float32)
  • 1
  • 2
  • 3

堆栈 LSTM 网络是一个比较好的网络架构。也就是前一个LSTM 隐藏层的输出是下一个LSTM的输入。堆栈LSTM可以帮助模型记住更多的上下文信息,但是带来的弊端是训练参数会增加很多,模型的训练时间会很长,过拟合的几率也会增加。

dynamic RNN 函数的第一个输出可以被认为是最后的隐藏状态向量。这个向量将被重新确定维度,然后乘以最后的权重矩阵和一个偏置项来获得最终的输出值。

weight = tf.Variable(tf.truncated_normal([lstmUnits, numClasses]))
bias = tf.Variable(tf.constant(0.1, shape=[numClasses]))
value = tf.transpose(value, [1, 0, 2])
#取最终的结果值
last = tf.gather(value, int(value.get_shape()[0]) - 1)
prediction = (tf.matmul(last, weight) + bias)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

接下来,我们需要定义正确的预测函数和正确率评估参数。正确的预测形式是查看最后输出的0-1向量是否和标记的0-1向量相同。

correctPred = tf.equal(tf.argmax(prediction,1), tf.argmax(labels,1))
accuracy = tf.reduce_mean(tf.cast(correctPred, tf.float32))
  • 1
  • 2

之后,我们使用一个标准的交叉熵损失函数来作为损失值。对于优化器,我们选择 Adam,并且采用默认的学习率。

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=labels))
optimizer = tf.train.AdamOptimizer().minimize(loss)
  • 1
  • 2

超参数调整

选择合适的超参数来训练你的神经网络是至关重要的。你会发现你的训练损失值与你选择的优化器(Adam,Adadelta,SGD,等等),学习率和网络架构都有很大的关系。特别是在RNN和LSTM中,单元数量和词向量的大小都是重要因素。

  • 学习率:RNN最难的一点就是它的训练非常困难,因为时间步骤很长。那么,学习率就变得非常重要了。如果我们将学习率设置的很大,那么学习曲线就会波动性很大,如果我们将学习率设置的很小,那么训练过程就会非常缓慢。根据经验,将学习率默认设置为 0.001 是一个比较好的开始。如果训练的非常缓慢,那么你可以适当的增大这个值,如果训练过程非常的不稳定,那么你可以适当的减小这个值。

  • 优化器:这个在研究中没有一个一致的选择,但是 Adam 优化器被广泛的使用。

  • LSTM单元的数量:这个值很大程度上取决于输入文本的平均长度。而更多的单元数量可以帮助模型存储更多的文本信息,当然模型的训练时间就会增加很多,并且计算成本会非常昂贵。

  • 词向量维度:词向量的维度一般我们设置为50到300。维度越多意味着可以存储更多的单词信息,但是你需要付出的是更昂贵的计算成本。

训练

训练过程的基本思路是,我们首先先定义一个 TensorFlow 会话。然后,我们加载一批评论和对应的标签。接下来,我们调用会话的 run 函数。这个函数有两个参数,第一个参数被称为 fetches 参数,这个参数定义了我们感兴趣的值。我们希望通过我们的优化器来最小化损失函数。第二个参数被称为 feed_dict 参数。这个数据结构就是我们提供给我们的占位符。我们需要将一个批处理的评论和标签输入模型,然后不断对这一组训练数据进行循环训练。

sess = tf.InteractiveSession()
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())

for i in range(iterations):
    #Next Batch of reviews
    nextBatch, nextBatchLabels = getTrainBatch();
    sess.run(optimizer, {input_data: nextBatch, labels: nextBatchLabels}) 
    
    if (i % 1000 == 0 and i != 0):
        loss_ = sess.run(loss, {input_data: nextBatch, labels: nextBatchLabels})
        accuracy_ = sess.run(accuracy, {input_data: nextBatch, labels: nextBatchLabels})
        
        print("iteration {}/{}...".format(i+1, iterations),
              "loss {}...".format(loss_),
              "accuracy {}...".format(accuracy_))    
    #Save the network every 10,000 training iterations
    if (i % 10000 == 0 and i != 0):
        save_path = saver.save(sess, "models/pretrained_lstm.ckpt", global_step=i)
        print("saved to %s" % save_path)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
iteration 1001/50000... loss 0.6308178901672363... accuracy 0.5...
iteration 2001/50000... loss 0.7168402671813965... accuracy 0.625...
iteration 3001/50000... loss 0.7420873641967773... accuracy 0.5...
iteration 4001/50000... loss 0.650059700012207... accuracy 0.5416666865348816...
iteration 5001/50000... loss 0.6791467070579529... accuracy 0.5...
iteration 6001/50000... loss 0.6914048790931702... accuracy 0.5416666865348816...
iteration 7001/50000... loss 0.36072710156440735... accuracy 0.8333333134651184...
iteration 8001/50000... loss 0.5486791729927063... accuracy 0.75...
iteration 9001/50000... loss 0.41976991295814514... accuracy 0.7916666865348816...
iteration 10001/50000... loss 0.10224487632513046... accuracy 1.0...
saved to models/pretrained_lstm.ckpt-10000
iteration 11001/50000... loss 0.37682783603668213... accuracy 0.8333333134651184...
iteration 12001/50000... loss 0.266050785779953... accuracy 0.9166666865348816...
iteration 13001/50000... loss 0.40790924429893494... accuracy 0.7916666865348816...
iteration 14001/50000... loss 0.22000855207443237... accuracy 0.875...
iteration 15001/50000... loss 0.49727579951286316... accuracy 0.7916666865348816...
iteration 16001/50000... loss 0.21477992832660675... accuracy 0.9166666865348816...
iteration 17001/50000... loss 0.31636106967926025... accuracy 0.875...
iteration 18001/50000... loss 0.17190784215927124... accuracy 0.9166666865348816...
iteration 19001/50000... loss 0.11049345880746841... accuracy 1.0...
iteration 20001/50000... loss 0.06362085044384003... accuracy 1.0...
saved to models/pretrained_lstm.ckpt-20000
iteration 21001/50000... loss 0.19093847274780273... accuracy 0.9583333134651184...
iteration 22001/50000... loss 0.06586482375860214... accuracy 0.9583333134651184...
iteration 23001/50000... loss 0.02577809803187847... accuracy 1.0...
iteration 24001/50000... loss 0.0732395276427269... accuracy 0.9583333134651184...
iteration 25001/50000... loss 0.30879321694374084... accuracy 0.9583333134651184...
iteration 26001/50000... loss 0.2742778956890106... accuracy 0.9583333134651184...
iteration 27001/50000... loss 0.23742587864398956... accuracy 0.875...
iteration 28001/50000... loss 0.04694415628910065... accuracy 1.0...
iteration 29001/50000... loss 0.031666990369558334... accuracy 1.0...
iteration 30001/50000... loss 0.09171193093061447... accuracy 1.0...
saved to models/pretrained_lstm.ckpt-30000
iteration 31001/50000... loss 0.03852967545390129... accuracy 1.0...
iteration 32001/50000... loss 0.06964454054832458... accuracy 1.0...
iteration 33001/50000... loss 0.12447216361761093... accuracy 0.9583333134651184...
iteration 34001/50000... loss 0.008963108994066715... accuracy 1.0...
iteration 35001/50000... loss 0.04129207879304886... accuracy 0.9583333134651184...
iteration 36001/50000... loss 0.0081111378967762... accuracy 1.0...
iteration 37001/50000... loss 0.022405564785003662... accuracy 1.0...
iteration 38001/50000... loss 0.03473325073719025... accuracy 1.0...
iteration 39001/50000... loss 0.09315425157546997... accuracy 0.9583333134651184...
iteration 40001/50000... loss 0.3166258931159973... accuracy 0.9583333134651184...
saved to models/pretrained_lstm.ckpt-40000
iteration 41001/50000... loss 0.03648881986737251... accuracy 1.0...
iteration 42001/50000... loss 0.2616865932941437... accuracy 0.9583333134651184...
iteration 43001/50000... loss 0.013914794661104679... accuracy 1.0...
iteration 44001/50000... loss 0.020460862666368484... accuracy 1.0...
iteration 45001/50000... loss 0.15876878798007965... accuracy 0.9583333134651184...
iteration 46001/50000... loss 0.007766606751829386... accuracy 1.0...
iteration 47001/50000... loss 0.02079685777425766... accuracy 1.0...
iteration 48001/50000... loss 0.017801295965909958... accuracy 1.0...
iteration 49001/50000... loss 0.017789073288440704... accuracy 1.0...
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53

在这里插入图片描述
在这里插入图片描述

查看上面的训练曲线,我们发现这个模型的训练结果还是不错的。损失值在稳定的下降,正确率也不断的在接近 100% 。然而,当分析训练曲线的时候,我们应该注意到我们的模型可能在训练集上面已经过拟合了。过拟合是机器学习中一个非常常见的问题,表示模型在训练集上面拟合的太好了,但是在测试集上面的泛化能力就会差很多。也就是说,如果你在训练集上面取得了损失值是 0 的模型,但是这个结果也不一定是最好的结果。当我们训练 LSTM 的时候,提前终止是一种常见的防止过拟合的方法。基本思路是,我们在训练集上面进行模型训练,同事不断的在测试集上面测量它的性能。一旦测试误差停止下降了,或者误差开始增大了,那么我们就需要停止训练了。因为这个迹象表明,我们网络的性能开始退化了。

导入一个预训练的模型需要使用 TensorFlow 的另一个会话函数,称为 Server ,然后利用这个会话函数来调用 restore 函数。这个函数包括两个参数,一个表示当前的会话,另一个表示保存的模型。

sess = tf.InteractiveSession()
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint('models'))
  • 1
  • 2
  • 3
INFO:tensorflow:Restoring parameters from models\pretrained_lstm.ckpt-40000
  • 1

然后,从我们的测试集中导入一些电影评论。请注意,这些评论是模型从来没有看见过的。

iterations = 10
for i in range(iterations):
    nextBatch, nextBatchLabels = getTestBatch();
    print("Accuracy for this batch:", (sess.run(accuracy, {input_data: nextBatch, labels: nextBatchLabels})) * 100)
  • 1
  • 2
  • 3
  • 4
Accuracy for this batch: 91.6666686535
Accuracy for this batch: 79.1666686535
Accuracy for this batch: 87.5
Accuracy for this batch: 87.5
Accuracy for this batch: 91.6666686535
Accuracy for this batch: 75.0
Accuracy for this batch: 91.6666686535
Accuracy for this batch: 70.8333313465
Accuracy for this batch: 83.3333313465
Accuracy for this batch: 95.8333313465
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号