当前位置:   article > 正文

卷积神经网络计算过程中的维度变化_卷积神经网络的维度变换

卷积神经网络的维度变换

最近在学习pyTorch, 在阅读pytorch教程的时候,发现有一个简单的卷积神经网络,之前搞明白过这个过程,时间太久,都忘的差不多了, 正好写个笔记记录总结一下
代码如下:

#! usr/bin/env python3
# -*- coding:utf-8 -*-

"""
 @Author:MaCan
 @Time:2019/10/29 19:59
 @File:torch_net.py
 @Mail:ma_cancan@163.com
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import torch
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()

        self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)
        self.conv2 = nn.Conv2d(6, 16, 5)

        self.fc1 = nn.Linear(16 * 5 * 5, 128)
        self.fc2 = nn.Linear(128, 64)
        self.fc3 = nn.Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        print('x1 {}'.format(x.size()))
        x = F.max_pool2d(F.relu(x), (2, 2))
        print('x2 {}'.format(x.size()))
        x = self.conv2(x)
        print('x3 {}'.format(x.size()))
        x = F.max_pool2d(F.relu(x), 2)
        print('x4: {}'.format(x.size()))
        x = x.view(-1, self.num_flat_features(x))
        print('x5: {}'.format(x.size()))
        x = F.relu(self.fc1(x))
        print('x6: {}'.format(x.size()))
        x = F.relu(self.fc2(x))
        print('x7: {}'.format(x.size()))
        x = self.fc3(x)
        print('x8: {}'.format(x.size()))
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # 除了batch 外的其他纬度值
        print('size: {}'.format(size))
        num_features = 1
        for s in size:
            num_features *= s
        return num_features
        
        
if __name__ == '__main__':
    net = Net()
    print(net)

    input = torch.randn(1, 1, 32, 32)
    out = net(input)
    print(out)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65

运行这个代码,输出如下:

Net(
  (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=128, bias=True)
  (fc2): Linear(in_features=128, out_features=64, bias=True)
  (fc3): Linear(in_features=64, out_features=10, bias=True)
)
x1 torch.Size([1, 6, 28, 28])
x2 torch.Size([1, 6, 14, 14])
x3 torch.Size([1, 16, 10, 10])
x4: torch.Size([1, 16, 5, 5])
size: torch.Size([16, 5, 5])
x5: torch.Size([1, 400])
x6: torch.Size([1, 128])
x7: torch.Size([1, 64])
x8: torch.Size([1, 10])
tensor([[ 0.0684,  0.0224, -0.0527, -0.1091,  0.0603, -0.0389, -0.0848, -0.0689,
          0.0107, -0.0398]], grad_fn=<AddmmBackward>)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

为了观察每个过程的维度变化,我写了一些print操作,其实维度变化已经很明显了,下面来具体计算一下每个维度是怎么计算的到的

  1. 第0层:网络的输入[1, 1, 32, 32],其中第一维是batch_size, 第二维是input_channel,后面两维是数据的大小,
  2. 第1层:卷积层(convolution layer).第一层使用的卷积核大小为[5, 5],卷积核(filter)的输出深度为6(output_channel),使用不填充,步长为1.不填充的情况下,输出的矩阵大小为32 -5 + 1 = 28.因此第一层卷积输出的feature_map的大小为[28, 28, 6].
  3. 第2层:池化层(pooling layer). 池化层过滤器大小[2, 2],步长为2.第二层的输出维度(28-2)/2 + 1(括号里面的“2”是kernel的对应维度, “/2”的2是步长)。因此第二层的的大小为[14,14,6].
  4. 后面的维度以此类推了。
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/786784
推荐阅读
  

闽ICP备14008679号