赞
踩
在上篇文章2024 年,基于大模型的 Agent 如何在企业落地?中提到关于在 AI 对话产品构建中的长记忆问题,这篇详细讨论下。在任何对话中,无论是人与人还是人与机器人之间,回忆过去的信息都至关重要,记忆系统不仅包括以前的消息列表,它还应该是理解和维护一个包含各种实体及其关系信息的动态模型,这篇文章分享下在多轮对话中实现长期记忆保持的 8 种方式,欢迎一起探讨。
在基于大模型的 Agent 中,长期记忆的状态维护至关重要,在 OpenAI AI 应用研究主管 Lilian Weng 的博客《基于大模型的 Agent 构成》[1]中,将记忆视为关键的组件之一,下面我将结合 LangChain 中的代码,8 种不同的记忆维护方式在不同场景中的应用。
基于大模型的Agent构成
一般客服场景
在电信公司的客服聊天机器人场景中,如果用户在对话中先是询问了账单问题,接着又谈到了网络连接问题,ConversationBufferMemory 可以用来记住整个与用户的对话历史,可以帮助 AI 在回答网络问题时还记得账单问题的相关细节,从而提供更连贯的服务。
商品咨询场景
在一个电商平台上,如果用户询问关于特定产品的问题(如手机的电池续航时间),然后又问到了配送方式,ConversationBufferWindowMemory 可以帮助 AI 只专注于最近的一两个问题(如配送方式),而不是整个对话历史,以提供更快速和专注的答复。
法律咨询场景
在法律咨询的场景中,客户可能会提到特定的案件名称、相关法律条款或个人信息(如“我在去年的交通事故中受了伤,想了解关于赔偿的法律建议”)。ConversationEntityMemory 可以帮助 AI 记住这些关键实体和实体关系细节,从而在整个对话过程中提供更准确、更个性化的法律建议。
医疗咨询场景
在医疗咨询中,一个病人可能会描述多个症状和过去的医疗历史(如“我有糖尿病史,最近觉得经常口渴和疲劳”)。ConversationKGMemory 可以构建一个包含病人症状、疾病历史和可能的健康关联的知识图谱,从而帮助 AI 提供更全面和深入的医疗建议。
教育辅导场景
在一系列的教育辅导对话中,学生可能会提出不同的数学问题或理解难题(如“我不太理解二次方程的求解方法”)。ConversationSummaryMemory 可以帮助 AI 总结之前的辅导内容和学生的疑问点,以便在随后的辅导中提供更针对性的解释和练习
技术支持场景
在处理一个长期的技术问题时(如软件故障排查),用户可能会在多次对话中提供不同的错误信息和反馈。ConversationSummaryBufferMemory 可以帮助 AI 保留最近几次交互的详细信息,同时提供历史问题处理的摘要,以便于更有效地识别和解决问题。
金融咨询场景
在金融咨询聊天机器人中,客户可能会提出多个问题,涉及投资、市场动态或个人财务规划(如“我想了解股市最近的趋势以及如何分配我的投资组合”)。ConversationTokenBufferMemory 可以帮助 AI 聚焦于最近和最关键的几个问题,同时避免由于记忆过多而导致的信息混淆。
了解最新新闻事件
用户可能会对特定新闻事件提出问题,如“最近的经济峰会有什么重要决策?” VectorStoreRetrieverMemory 能够快速从大量历史新闻数据中检索出与当前问题最相关的信息,即使这些信息在整个对话历史中不是最新的,也能提供及时准确的背景信息和详细报道。
vectorstore = Chroma(embedding_function=OpenAIEmbeddings()) retriever = vectorstore.as_retriever(search_kwargs=dict(k=1)) memory = VectorStoreRetrieverMemory(retriever=retriever) memory.save_context({"input": "我喜欢吃火锅"}, {"output": "听起来很好吃"}) memory.save_context({"input": "我不喜欢看摔跤比赛"}, {"output": "我也是"}) PROMPT_TEMPLATE = """以下是人类和 AI 之间的友好对话。AI 话语多且提供了许多来自其上下文的具体细节。如果 AI 不知道问题的答案,它会诚实地说不知道。 以前对话的相关片段: {history} (如果不相关,你不需要使用这些信息) 当前对话: 人类:{input} AI: """ prompt = PromptTemplate(input_variables=["history", "input"], template=PROMPT_TEMPLATE) conversation_with_summary = ConversationChain( llm=llm, prompt=prompt, memory=memory, verbose=True ) print(conversation_with_summary.predict(input="你好,我是莫尔索,你叫什么")) print(conversation_with_summary.predict(input="我喜欢的食物是什么?")) print(conversation_with_summary.predict(input="我提到了哪些运动?"))
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。
一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。
二、AI大模型视频教程
三、AI大模型各大学习书籍
四、AI大模型各大场景实战案例
五、结束语
学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。
再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。
因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。