当前位置:   article > 正文

ElasticSearch入门_2.3.5elastic使用

2.3.5elastic使用

全文搜索属于最常见的需求,开源的 Elasticsearch (以下简称 Elastic)是目前全文搜索引擎的首选。

它可以快速地储存、搜索和分析海量数据。维基百科、Stack Overflow、Github 都采用它。

img

Elastic 的底层是开源库 Lucene。但是,你没法直接用 Lucene,必须自己写代码去调用它的接口。Elastic 是 Lucene 的封装,提供了 REST API 的操作接口,开箱即用。

本文从零开始,讲解如何使用 Elastic 搭建自己的全文搜索引擎。每一步都有详细的说明,大家跟着做就能学会。

一、安装

Elastic 需要 Java 8 环境。如果你的机器还没安装 Java,可以参考这篇文章,注意要保证环境变量JAVA_HOME正确设置。

安装完 Java,就可以跟着官方文档安装 Elastic。直接下载压缩包比较简单。

$ wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5.5.1.zip
$ unzip elasticsearch-5.5.1.zip
$ cd elasticsearch-5.5.1/ 
  • 1
  • 2
  • 3

接着,进入解压后的目录,运行下面的命令,启动 Elastic。

$ ./bin/elasticsearch
  • 1

如果这时报错"max virtual memory areas vm.maxmapcount [65530] is too low",要运行下面的命令。

$ sudo sysctl -w vm.max_map_count=262144
  • 1

如果一切正常,Elastic 就会在默认的9200端口运行。这时,打开另一个命令行窗口,请求该端口,会得到说明信息。

$ curl localhost:9200

{
  "name" : "atntrTf",
  "cluster_name" : "elasticsearch",
  "cluster_uuid" : "tf9250XhQ6ee4h7YI11anA",
  "version" : {
    "number" : "5.5.1",
    "build_hash" : "19c13d0",
    "build_date" : "2017-07-18T20:44:24.823Z",
    "build_snapshot" : false,
    "lucene_version" : "6.6.0"
  },
  "tagline" : "You Know, for Search"
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

上面代码中,请求9200端口,Elastic 返回一个 JSON 对象,包含当前节点、集群、版本等信息。

按下 Ctrl + C,Elastic 就会停止运行。

默认情况下,Elastic 只允许本机访问,如果需要远程访问,可以修改 Elastic 安装目录的config/elasticsearch.yml文件,去掉network.host的注释,将它的值改成0.0.0.0,然后重新启动 Elastic。

network.host: 0.0.0.0
  • 1

上面代码中,设成0.0.0.0让任何人都可以访问。线上服务不要这样设置,要设成具体的 IP。

二、基本概念

2.1 Node 与 Cluster

Elastic 本质上是一个分布式数据库,允许多台服务器协同工作,每台服务器可以运行多个 Elastic 实例。

单个 Elastic 实例称为一个节点(node)。一组节点构成一个集群(cluster)。

2.2 Index

Elastic 会索引所有字段,经过处理后写入一个反向索引(Inverted Index)。查找数据的时候,直接查找该索引。

所以,Elastic 数据管理的顶层单位就叫做 Index(索引)。它是单个数据库的同义词。每个 Index (即数据库)的名字必须是小写。

下面的命令可以查看当前节点的所有 Index。

$ curl -X GET 'http://localhost:9200/_cat/indices?v'
  • 1

2.3 Document

Index 里面单条的记录称为 Document(文档)。许多条 Document 构成了一个 Index。

Document 使用 JSON 格式表示,下面是一个例子。

{
  "user": "张三",
  "title": "工程师",
  "desc": "数据库管理"
}
  • 1
  • 2
  • 3
  • 4
  • 5

同一个 Index 里面的 Document,不要求有相同的结构(scheme),但是最好保持相同,这样有利于提高搜索效率。

2.4 Type

Document 可以分组,比如weather这个 Index 里面,可以按城市分组(北京和上海),也可以按气候分组(晴天和雨天)。这种分组就叫做 Type,它是虚拟的逻辑分组,用来过滤 Document。

不同的 Type 应该有相似的结构(schema),举例来说,id字段不能在这个组是字符串,在另一个组是数值。这是与关系型数据库的表的一个区别。性质完全不同的数据(比如productslogs)应该存成两个 Index,而不是一个 Index 里面的两个 Type(虽然可以做到)。

下面的命令可以列出每个 Index 所包含的 Type。

$ curl 'localhost:9200/_mapping?pretty=true'
  • 1

根据规划,Elastic 6.x 版只允许每个 Index 包含一个 Type,7.x 版将会彻底移除 Type。

三、新建和删除 Index

新建 Index,可以直接向 Elastic 服务器发出 PUT 请求。下面的例子是新建一个名叫weather的 Index。

$ curl -X PUT 'localhost:9200/weather'
  • 1

服务器返回一个 JSON 对象,里面的acknowledged字段表示操作成功。

{
  "acknowledged":true,
  "shards_acknowledged":true
}
  • 1
  • 2
  • 3
  • 4

然后,我们发出 DELETE 请求,删除这个 Index。

$ curl -X DELETE 'localhost:9200/weather'
  • 1

四、中文分词设置

首先,安装中文分词插件。这里使用的是 ik,也可以考虑其他插件(比如 smartcn)。

$ ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v5.5.1/elasticsearch-analysis-ik-5.5.1.zip
  • 1

上面代码安装的是5.5.1版的插件,与 Elastic 5.5.1 配合使用。

接着,重新启动 Elastic,就会自动加载这个新安装的插件。

然后,新建一个 Index,指定需要分词的字段。这一步根据数据结构而异,下面的命令只针对本文。基本上,凡是需要搜索的中文字段,都要单独设置一下。

$ curl -X PUT 'localhost:9200/accounts' -d '
{
  "mappings": {
    "person": {
      "properties": {
        "user": {
          "type": "text",
          "analyzer": "ik_max_word",
          "search_analyzer": "ik_max_word"
        },
        "title": {
          "type": "text",
          "analyzer": "ik_max_word",
          "search_analyzer": "ik_max_word"
        },
        "desc": {
          "type": "text",
          "analyzer": "ik_max_word",
          "search_analyzer": "ik_max_word"
        }
      }
    }
  }
}'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

上面代码中,首先新建一个名称为accounts的 Index,里面有一个名称为person的 Type。person有三个字段。
如果报错Root mapping definition has unsupported parameters:,参考:
https://www.elastic.co/guide/en/elasticsearch/reference/current/removal-of-types.html

  • user
  • title
  • desc

这三个字段都是中文,而且类型都是文本(text),所以需要指定中文分词器,不能使用默认的英文分词器。

Elastic 的分词器称为 analyzer。我们对每个字段指定分词器。

"user": {
  "type": "text",
  "analyzer": "ik_max_word",
  "search_analyzer": "ik_max_word"
}
  • 1
  • 2
  • 3
  • 4
  • 5

上面代码中,analyzer是字段文本的分词器,search_analyzer是搜索词的分词器。ik_max_word分词器是插件ik提供的,可以对文本进行最大数量的分词。

五、数据操作

5.1 新增记录

向指定的 /Index/Type 发送 PUT 请求,就可以在 Index 里面新增一条记录。比如,向/accounts/person发送请求,就可以新增一条人员记录。

$ curl -X PUT 'localhost:9200/accounts/person/1' -d '
{
  "user": "张三",
  "title": "工程师",
  "desc": "数据库管理"
}' 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

服务器返回的 JSON 对象,会给出 Index、Type、Id、Version 等信息。

{
  "_index":"accounts",
  "_type":"person",
  "_id":"1",
  "_version":1,
  "result":"created",
  "_shards":{"total":2,"successful":1,"failed":0},
  "created":true
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

如果你仔细看,会发现请求路径是/accounts/person/1,最后的1是该条记录的 Id。它不一定是数字,任意字符串(比如abc)都可以。

新增记录的时候,也可以不指定 Id,这时要改成 POST 请求。

$ curl -X POST 'localhost:9200/accounts/person' -d '
{
  "user": "李四",
  "title": "工程师",
  "desc": "系统管理"
}'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

上面代码中,向/accounts/person发出一个 POST 请求,添加一个记录。这时,服务器返回的 JSON 对象里面,_id字段就是一个随机字符串。

{
  "_index":"accounts",
  "_type":"person",
  "_id":"AV3qGfrC6jMbsbXb6k1p",
  "_version":1,
  "result":"created",
  "_shards":{"total":2,"successful":1,"failed":0},
  "created":true
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

注意,如果没有先创建 Index(这个例子是accounts),直接执行上面的命令,Elastic 也不会报错,而是直接生成指定的 Index。所以,打字的时候要小心,不要写错 Index 的名称。

5.2 查看记录

/Index/Type/Id发出 GET 请求,就可以查看这条记录。

$ curl 'localhost:9200/accounts/person/1?pretty=true'
  • 1

上面代码请求查看/accounts/person/1这条记录,URL 的参数pretty=true表示以易读的格式返回。

返回的数据中,found字段表示查询成功,_source字段返回原始记录。

{
  "_index" : "accounts",
  "_type" : "person",
  "_id" : "1",
  "_version" : 1,
  "found" : true,
  "_source" : {
    "user" : "张三",
    "title" : "工程师",
    "desc" : "数据库管理"
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

如果 Id 不正确,就查不到数据,found字段就是false

$ curl 'localhost:9200/weather/beijing/abc?pretty=true'

{
  "_index" : "accounts",
  "_type" : "person",
  "_id" : "abc",
  "found" : false
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

5.3 删除记录

删除记录就是发出 DELETE 请求。

$ curl -X DELETE 'localhost:9200/accounts/person/1'
  • 1

这里先不要删除这条记录,后面还要用到。

5.4 更新记录

更新记录就是使用 PUT 请求,重新发送一次数据。

$ curl -X PUT 'localhost:9200/accounts/person/1' -d '
{
    "user" : "张三",
    "title" : "工程师",
    "desc" : "数据库管理,软件开发"
}' 

{
  "_index":"accounts",
  "_type":"person",
  "_id":"1",
  "_version":2,
  "result":"updated",
  "_shards":{"total":2,"successful":1,"failed":0},
  "created":false
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

上面代码中,我们将原始数据从"数据库管理"改成"数据库管理,软件开发"。 返回结果里面,有几个字段发生了变化。

"_version" : 2,
"result" : "updated",
"created" : false
  • 1
  • 2
  • 3

可以看到,记录的 Id 没变,但是版本(version)从1变成2,操作类型(result)从created变成updatedcreated字段变成false,因为这次不是新建记录。

六、数据查询

6.1 返回所有记录

使用 GET 方法,直接请求/Index/Type/_search,就会返回所有记录。

$ curl 'localhost:9200/accounts/person/_search'

{
  "took":2,
  "timed_out":false,
  "_shards":{"total":5,"successful":5,"failed":0},
  "hits":{
    "total":2,
    "max_score":1.0,
    "hits":[
      {
        "_index":"accounts",
        "_type":"person",
        "_id":"AV3qGfrC6jMbsbXb6k1p",
        "_score":1.0,
        "_source": {
          "user": "李四",
          "title": "工程师",
          "desc": "系统管理"
        }
      },
      {
        "_index":"accounts",
        "_type":"person",
        "_id":"1",
        "_score":1.0,
        "_source": {
          "user" : "张三",
          "title" : "工程师",
          "desc" : "数据库管理,软件开发"
        }
      }
    ]
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

上面代码中,返回结果的 took字段表示该操作的耗时(单位为毫秒),timed_out字段表示是否超时,hits字段表示命中的记录,里面子字段的含义如下。

  • total:返回记录数,本例是2条。
  • max_score:最高的匹配程度,本例是1.0
  • hits:返回的记录组成的数组。

返回的记录中,每条记录都有一个_score字段,表示匹配的程序,默认是按照这个字段降序排列。

6.2 全文搜索

Elastic 的查询非常特别,使用自己的查询语法,要求 GET 请求带有数据体。

$ curl 'localhost:9200/accounts/person/_search'  -d '
{
  "query" : { "match" : { "desc" : "软件" }}
}'
  • 1
  • 2
  • 3
  • 4

上面代码使用 Match 查询,指定的匹配条件是desc字段里面包含"软件"这个词。返回结果如下。

{
  "took":3,
  "timed_out":false,
  "_shards":{"total":5,"successful":5,"failed":0},
  "hits":{
    "total":1,
    "max_score":0.28582606,
    "hits":[
      {
        "_index":"accounts",
        "_type":"person",
        "_id":"1",
        "_score":0.28582606,
        "_source": {
          "user" : "张三",
          "title" : "工程师",
          "desc" : "数据库管理,软件开发"
        }
      }
    ]
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

Elastic 默认一次返回10条结果,可以通过size字段改变这个设置。

$ curl 'localhost:9200/accounts/person/_search'  -d '
{
  "query" : { "match" : { "desc" : "管理" }},
  "size": 1
}'
  • 1
  • 2
  • 3
  • 4
  • 5

上面代码指定,每次只返回一条结果。

还可以通过from字段,指定位移。

$ curl 'localhost:9200/accounts/person/_search'  -d '
{
  "query" : { "match" : { "desc" : "管理" }},
  "from": 1,
  "size": 1
}'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

上面代码指定,从位置1开始(默认是从位置0开始),只返回一条结果。

6.3 逻辑运算

如果有多个搜索关键字, Elastic 认为它们是or关系。

$ curl 'localhost:9200/accounts/person/_search'  -d '
{
  "query" : { "match" : { "desc" : "软件 系统" }}
}'
  • 1
  • 2
  • 3
  • 4

上面代码搜索的是软件 or 系统

如果要执行多个关键词的and搜索,必须使用布尔查询

$ curl 'localhost:9200/accounts/person/_search'  -d '
{
  "query": {
    "bool": {
      "must": [
        { "match": { "desc": "软件" } },
        { "match": { "desc": "系统" } }
      ]
    }
  }
}'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

七、参考链接

ES入门原理

0. 带着问题上路——ES是如何产生的?

(1)思考:大规模数据如何检索?

如:当系统数据量上了10亿、100亿条的时候,我们在做系统架构的时候通常会从以下角度去考虑问题:
1)用什么数据库好?(mysql、sybase、oracle、达梦、神通、mongodb、hbase…)
2)如何解决单点故障;(lvs、F5、A10、Zookeep、MQ)
3)如何保证数据安全性;(热备、冷备、异地多活)
4)如何解决检索难题;(数据库代理中间件:mysql-proxy、Cobar、MaxScale等;)
5)如何解决统计分析问题;(离线、近实时)

(2)传统数据库的应对解决方案

对于关系型数据,我们通常采用以下或类似架构去解决查询瓶颈和写入瓶颈:
解决要点:
1)通过主从备份解决数据安全性问题;
2)通过数据库代理中间件心跳监测,解决单点故障问题;
3)通过代理中间件将查询语句分发到各个slave节点进行查询,并汇总结果
这里写图片描述

(3)非关系型数据库的解决方案

对于Nosql数据库,以mongodb为例,其它原理类似:
解决要点:
1)通过副本备份保证数据安全性;
2)通过节点竞选机制解决单点问题;
3)先从配置库检索分片信息,然后将请求分发到各个节点,最后由路由节点合并汇总结果
这里写图片描述

另辟蹊径——完全把数据放入内存怎么样?

我们知道,完全把数据放在内存中是不可靠的,实际上也不太现实,当我们的数据达到PB级别时,按照每个节点96G内存计算,在内存完全装满的数据情况下,我们需要的机器是:1PB=1024T=1048576G
节点数=1048576/96=10922个
实际上,考虑到数据备份,节点数往往在2.5万台左右。成本巨大决定了其不现实!

从前面讨论我们了解到,把数据放在内存也好,不放在内存也好,都不能完完全全解决问题。
全部放在内存速度问题是解决了,但成本问题上来了。
为解决以上问题,从源头着手分析,通常会从以下方式来寻找方法:
1、存储数据时按有序存储;
2、将数据和索引分离;
3、压缩数据;
这就引出了Elasticsearch

1. ES 基础一网打尽

1.1 ES定义

ES=elaticsearch简写, Elasticsearch是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。
Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

1.2 Lucene与ES关系?

1)Lucene只是一个库。想要使用它,你必须使用Java来作为开发语言并将其直接集成到你的应用中,更糟糕的是,Lucene非常复杂,你需要深入了解检索的相关知识来理解它是如何工作的。

2)Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

1.3 ES主要解决问题:

1)检索相关数据;
2)返回统计结果;
3)速度要快。

1.4 ES工作原理

当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示:
这里写图片描述

1.5 ES核心概念

1)Cluster:集群。

ES可以作为一个独立的单个搜索服务器。不过,为了处理大型数据集,实现容错和高可用性,ES可以运行在许多互相合作的服务器上。这些服务器的集合称为集群。

2)Node:节点。

形成集群的每个服务器称为节点。

3)Shard:分片。

当有大量的文档时,由于内存的限制、磁盘处理能力不足、无法足够快的响应客户端的请求等,一个节点可能不够。这种情况下,数据可以分为较小的分片。每个分片放到不同的服务器上。
当你查询的索引分布在多个分片上时,ES会把查询发送给每个相关的分片,并将结果组合在一起,而应用程序并不知道分片的存在。即:这个过程对用户来说是透明的。

4)Replia:副本。

为提高查询吞吐量或实现高可用性,可以使用分片副本。
副本是一个分片的精确复制,每个分片可以有零个或多个副本。ES中可以有许多相同的分片,其中之一被选择更改索引操作,这种特殊的分片称为主分片。
当主分片丢失时,如:该分片所在的数据不可用时,集群将副本提升为新的主分片。

5)全文检索。

全文检索就是对一篇文章进行索引,可以根据关键字搜索,类似于mysql里的like语句。
全文索引就是把内容根据词的意义进行分词,然后分别创建索引,例如”你们的激情是因为什么事情来的” 可能会被分词成:“你们“,”激情“,“什么事情“,”来“ 等token,这样当你搜索“你们” 或者 “激情” 都会把这句搜出来。

1.6 ES数据架构的主要概念(与关系数据库Mysql对比)

这里写图片描述
(1)关系型数据库中的数据库(DataBase),等价于ES中的索引(Index)
(2)一个数据库下面有N张表(Table),等价于1个索引Index下面有N多类型(Type),
(3)一个数据库表(Table)下的数据由多行(ROW)多列(column,属性)组成,等价于1个Type由多个文档(Document)和多Field组成。
(4)在一个关系型数据库里面,schema定义了表、每个表的字段,还有表和字段之间的关系。 与之对应的,在ES中:Mapping定义索引下的Type的字段处理规则,即索引如何建立、索引类型、是否保存原始索引JSON文档、是否压缩原始JSON文档、是否需要分词处理、如何进行分词处理等。
(5)在数据库中的增insert、删delete、改update、查search操作等价于ES中的增PUT/POST、删Delete、改_update、查GET.

1.7 ELK是什么?

ELK=elasticsearch+Logstash+kibana
elasticsearch:后台分布式存储以及全文检索
logstash: 日志加工、“搬运工”
kibana:数据可视化展示。
ELK架构为数据分布式存储、可视化查询和日志解析创建了一个功能强大的管理链。 三者相互配合,取长补短,共同完成分布式大数据处理工作。

2. ES特点和优势

1)分布式实时文件存储,可将每一个字段存入索引,使其可以被检索到。
2)实时分析的分布式搜索引擎。
分布式:索引分拆成多个分片,每个分片可有零个或多个副本。集群中的每个数据节点都可承载一个或多个分片,并且协调和处理各种操作;
负载再平衡和路由在大多数情况下自动完成。
3)可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据。也可以运行在单台PC上(已测试)
4)支持插件机制,分词插件、同步插件、Hadoop插件、可视化插件等。

3、ES性能

3.1 性能结果展示

(1)硬件配置:
CPU 16核 AuthenticAMD
内存 总量:32GB
硬盘 总量:500GB 非SSD

(2)在上述硬件指标的基础上测试性能如下:
1)平均索引吞吐量: 12307docs/s(每个文档大小:40B/docs)
2)平均CPU使用率: 887.7%(16核,平均每核:55.48%)
3)构建索引大小: 3.30111 GB
4)总写入量: 20.2123 GB
5)测试总耗时: 28m 54s.

3.2 性能esrally工具(推荐)

使用参考:http://blog.csdn.net/laoyang360/article/details/52155481

4、为什么要用ES?

4.1 ES国内外使用优秀案例

1) 2013年初,GitHub抛弃了Solr,采取ElasticSearch 来做PB级的搜索。 “GitHub使用ElasticSearch搜索20TB的数据,包括13亿文件和1300亿行代码”。

2)维基百科:启动以elasticsearch为基础的核心搜索架构。
3)SoundCloud:“SoundCloud使用ElasticSearch为1.8亿用户提供即时而精准的音乐搜索服务”。
4)百度:百度目前广泛使用ElasticSearch作为文本数据分析,采集百度所有服务器上的各类指标数据及用户自定义数据,通过对各种数据进行多维分析展示,辅助定位分析实例异常或业务层面异常。目前覆盖百度内部20多个业务线(包括casio、云分析、网盟、预测、文库、直达号、钱包、风控等),单集群最大100台机器,200个ES节点,每天导入30TB+数据。

4.2 我们也需要

实际项目开发实战中,几乎每个系统都会有一个搜索的功能,当搜索做到一定程度时,维护和扩展起来难度就会慢慢变大,所以很多公司都会把搜索单独独立出一个模块,用ElasticSearch等来实现。

近年ElasticSearch发展迅猛,已经超越了其最初的纯搜索引擎的角色,现在已经增加了数据聚合分析(aggregation)和可视化的特性,如果你有数百万的文档需要通过关键词进行定位时,ElasticSearch肯定是最佳选择。当然,如果你的文档是JSON的,你也可以把ElasticSearch当作一种“NoSQL数据库”, 应用ElasticSearch数据聚合分析(aggregation)的特性,针对数据进行多维度的分析。

【知乎:热酷架构师潘飞】ES在某些场景下替代传统DB
个人以为Elasticsearch作为内部存储来说还是不错的,效率也基本能够满足,在某些方面替代传统DB也是可以的,前提是你的业务不对操作的事性务有特殊要求;而权限管理也不用那么细,因为ES的权限这块还不完善。
由于我们对ES的应用场景仅仅是在于对某段时间内的数据聚合操作,没有大量的单文档请求(比如通过userid来找到一个用户的文档,类似于NoSQL的应用场景),所以能否替代NoSQL还需要各位自己的测试。
如果让我选择的话,我会尝试使用ES来替代传统的NoSQL,因为它的横向扩展机制太方便了。

5. ES的应用场景是怎样的?

通常我们面临问题有两个:

1)新系统开发尝试使用ES作为存储和检索服务器;
2)现有系统升级需要支持全文检索服务,需要使用ES。
以上两种架构的使用,以下链接进行详细阐述。
http://blog.csdn.net/laoyang360/article/details/52227541

一线公司ES使用场景:

1)新浪ES 如何分析处理32亿条实时日志 http://dockone.io/article/505
2)阿里ES 构建挖财自己的日志采集和分析体系 http://afoo.me/columns/tec/logging-platform-spec.html
3)有赞ES 业务日志处理 http://tech.youzan.com/you-zan-tong-ri-zhi-ping-tai-chu-tan/
4)ES实现站内搜索 http://www.wtoutiao.com/p/13bkqiZ.html

6. 如何部署ES?

6.1 ES部署(无需安装)

1)零配置,开箱即用
2)没有繁琐的安装配置
3)java版本要求:最低1.7
我使用的1.8
[root@laoyang config_lhy]# echo $JAVA_HOME
/opt/jdk1.8.0_91
4)下载地址:
https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/zip/elasticsearch/2.3.5/elasticsearch-2.3.5.zip
5)启动
cd /usr/local/elasticsearch-2.3.5
./bin/elasticsearch
bin/elasticsearch -d(后台运行)

6.2 ES必要的插件

必要的Head、kibana、IK(中文分词)、graph等插件的详细安装和使用。
https://blog.csdn.net/laoyang360/article/details/80645710

6.3 ES windows下一键安装

自写bat脚本实现windows下一键安装。
1)一键安装ES及必要插件(head、kibana、IK、logstash等)
2)安装后以服务形式运行ES。
3)比自己摸索安装节省至少2小时时间,效率非常高。
脚本说明: https://blog.csdn.net/laoyang360/article/details/73368740

7. ES对外接口(开发人员关注)

1)JAVA API接口

http://www.ibm.com/developerworks/library/j-use-elasticsearch-java-apps/index.html

2)RESTful API接口

常见的增、删、改、查操作实现:
http://blog.csdn.net/laoyang360/article/details/51931981

8.ES遇到问题怎么办?

1)国外:https://discuss.elastic.co/
2)国内:http://elasticsearch.cn/

参考:

[1] http://www.tuicool.com/articles/7fueUbb
[2] http://zhaoyanblog.com/archives/495.html
[3]《Elasticsearch服务器开发》
[4]《实战Elasticsearch、Logstash、Kibana》
[5]《Elasticsearch In Action》
[6]《某ES大牛PPT》

以上内容参考:

http://www.ruanyifeng.com/blog/2017/08/elasticsearch.html

https://blog.csdn.net/achuo/article/details/87865141

ElasticSearch 面试 4 连问,你顶得住吗?

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号