当前位置:   article > 正文

【OpenCV C++20 学习笔记】拉普拉斯(Laplace)二阶求导-边缘检测

【OpenCV C++20 学习笔记】拉普拉斯(Laplace)二阶求导-边缘检测

原理

OpenCV中,Sobel算法可以对图片中的值求一阶导数,从而计算出图片中的边缘线。其原理如下面的示意图:
Sobel求导示意图
那么,如果再求一次导数的,即求二阶导数,其实也可以找出这个颜色值显著变化的分界点:
Laplace二阶求导示意图
可以看到,现在颜色值显著变化的位置,其导数值为0.
但是这有一个问题,就是二阶导数为0的也可以是一些无意义的值。所以,必须要进行一些过滤。

拉普拉斯算子(Laplacian Operator)

拉普拉斯算子的算法公式定义如下:
L a p l a c e ( f ) = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 Laplace(f) = \frac{\partial^2f}{\partial x^2} + \frac{\partial^2f}{\partial y^2} Laplace(f)=x22f+y22f
可以看到拉普拉斯算法可以同时对两个维度进行求导,这是它相对于Sobel算法的优势。但是由于拉普拉斯算法还是要求斜率,所以其内部仍然调用了Sobel算法。

API

在OpenCV中,使用Laplacian()函数来进行拉普拉斯计算,其函数原型如下:

void cv::Laplacian(	InputArray	src,							//输入图
					OutputArray	dst,							//输出图
					int			ddepth,							//输出的数据类型,-1表示与输入图一致
					int			ksize = 1,						//卷积核尺寸,必须是正奇数
					double		scale =1,						//计算结果的放大系数,默认为1,即不放大
					double		delta = 0,						//计算结果的偏移值,默认为0,即不偏移
					int			borderType = BORDER_DEFAULT)	//图像边缘的扩充方式,默认为镜像复制
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • ksize = 1时,使用一个 3 × 3 3 \times 3 3×3的卷积核,如下:
    [ 0 1 0 1 − 4 1 0 1 0 ]
    [010141010]
    010141010

实例

在进行拉普拉斯求导之前也要进行滤波和灰度化,以去除噪音。
这里我们将拉普拉斯计算的结果中的数据类型定义为CV_16S,是为了防止溢出。接着又通过convertScaleAbs()函数转换回了CV_8U类型。
完整代码如下:

#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>

using namespace cv;

int main() {
	Mat src{ imread("lena.jpg") };

	//高斯滤波
	Mat blured;
	GaussianBlur(src, blured, Size(3, 3), 0, 0, BORDER_DEFAULT);

	//灰度化
	Mat gray;
	cvtColor(blured, gray, COLOR_BGR2GRAY);

	//拉普拉斯
	Mat dst;
	Laplacian(gray, dst, CV_16S, 3, 1, 0, BORDER_DEFAULT);

	//转换为CV_8U
	Mat abs_dst;
	convertScaleAbs(dst, abs_dst);

	imshow("原图", src);
	imshow("Laplace", abs_dst);
	waitKey(0);
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

运行结果如下:
拉普拉斯运算结果

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/码创造者/article/detail/942669
推荐阅读
相关标签
  

闽ICP备14008679号