当前位置:   article > 正文

大数据分析之数据降维_请说明什么是数据降维,在大数据处理中,其作用是什么

请说明什么是数据降维,在大数据处理中,其作用是什么

机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的。

目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据。之所以使用降维后的数据表示是因为在原始的高维空间中,包含有冗余信息以及噪音信息,在实际应用例如图像识别中造成了误差,降低了准确率;而通过降维,我们希望减少 冗余信息 所造成的误差,提高识别(或其他应用)的精度。又或者希望通过降维算法来寻找数据内部的本质结构特征。

在很多算法中,降维算法成为了数据预处理的一部分,如PCA。事实上,有一些算法如果没有降维预处理,其实是很难得到很好的效果的。

1、降维的作用:
(1)降低时间的复杂度和空间复杂度
(2)节省了提取不必要特征的开销
(3)去掉数据集中夹杂的噪音
(4)较简单的模型在小数据集上有更强的鲁棒性
(5)当数据能有较少的特征进行解释,我们可以更好地解释数据,是的我们可以提取知识
(6)实现数据的可视化
2、降维的目的
用来进行特征选择和特征提取。
①特征选择:选择重要的特征子集,删除其余特征;
特征提取:由原始特征形成的较少的新特征。
在特征提取中,我们要找到k个新的维度的集合,这些维度是原来k个维度的组合,这个方法可以是监督的,也可以是非监督的,如PCA是非监督的,LDA是监督的。
3、降维的方法
目前常用的降维方法如下图:
在这里插入图片描述
图中基本上包括了大多数流形学习方法,不过这里面没有t-SNE,相比于其他算法,t-SNE算是比较新的一种方法,也是效果比较好的一种方法。t-SNE是深度学习大牛Hinton和lvdmaaten在2008年提出的,lvdmaaten对t-SNE有个主页介绍:tsne,包括论文以及各种编程语言的实现。
t-SNE是由SNE衍生出的一种算法,SNE最早出现在2002年,它改变了MDS和ISOMAP中基于距离不变的思想,将高维映射到低维的同时,尽量保证相互之间的分布概率不变,SNE将高维和低维中的样本分布都看作高斯分布,而Tsne将低维中的坐标当做T分布,这样做的好处是为了让距离大的簇之间距离拉大,从而解决了拥挤问题。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/码创造者/article/detail/954370
推荐阅读
相关标签
  

闽ICP备14008679号