赞
踩
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」
聚类分析(Clustering Analysis)是一种将数据对象分成多个簇(Cluster)的技术,使得同一簇内的对象具有较高的相似性,而不同簇之间的对象具有较大的差异性。这种方法在无监督学习(Unsupervised Learning)中广泛应用,常用于数据预处理、模式识别、图像处理和市场分析等领域
通过聚类分析,可以有效地发现数据中的结构和模式,为进一步的数据分析和挖掘提供基础。例如,在市场分析中,聚类分析可以帮助企业将客户群体进行细分,从而制定更有针对性的营销策略
聚类算法种类繁多,常见的主要有以下几种:
聚类分析在数据科学中有广泛的应用,以下是一些典型场景:
K-均值(K-Means)是一种常见的划分式聚类算法,其目标是将数据集分成 ( K ) 个簇,使得每个簇内的数据点与该簇的中心点(质心)之间的距离平方和最小。该算法的基本原理是通过迭代优化,逐步调整簇中心位置,直到簇中心不再发生变化或达到预设的迭代次数
K-均值算法的具体步骤如下:
K值选择是K-均值聚类中的一个关键问题。通常可以通过肘部法则(Elbow Method)来选择合适的 ( K ) 值。肘部法则通过绘制不同 ( K ) 值对应的聚类误差平方和(SSE),选择拐点处的 ( K ) 值
初始中心的选择对K-均值算法的收敛速度和聚类效果有重要影响。常用的改进方法是K-means++,它通过一种概率分布方法选择初始质心,能有效提高算法性能
优点:
缺点:
K-均值聚类适用于以下场景:
层次聚类(Hierarchical Clustering)是一种基于层次结构的聚类方法。它通过构建树状的簇结构,逐层合并或分裂数据点,形成一个层次化的簇结构。层次聚类主要有两种类型:凝聚式(Agglomerative)和分裂式(Divisive)。
以凝聚式层次聚类为例,算法步骤如下:
两者的主要区别在于聚类过程的方向,分裂式自顶向下,凝聚式自底向上。
优点:
缺点:
层次聚类适用于以下场景:
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类方法,通过识别数据点的密度连接区域来形成簇。DBSCAN不需要预先指定簇的数量,能够识别任意形状的簇,并且对噪声和异常点有较好的处理能力
DBSCAN的基本原理是定义两个参数:( \varepsilon ) (Epsilon,邻域半径)和 ( \text{minPts} ) (最小点数),以确定簇的密度。数据点分为三类:
DBSCAN 算法的具体步骤如下:
优点:
缺点:
DBSCAN 聚类适用于以下场景:
在前面章节中,我们详细介绍了K-均值、层次聚类和DBSCAN这三种聚类方法。下面将从多个维度对这三种方法进行比较。
如何选择适合的聚类方法
在实际应用中,选择适合的聚类方法需要考虑以下因素:
通过以上内容,我们对K-均值、层次聚类和DBSCAN这三种聚类方法进行了解析,并比较了它们的优缺点和适用场景。希望这些内容能帮助大侠们在实际数据分析中选择合适的聚类方法,提高数据处理和分析的效果。
- 科研为国分忧,创新与民造福 -
日更时间紧任务急,难免有疏漏之处,还请大侠海涵
内容仅供学习交流之用,部分素材来自网络,侵联删
基础还是很重要的
能一步一步往前走是很幸福的
毕竟,不确定是常态
如果觉得内容有价值,烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;
同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。