赞
踩
一,矩阵Matrix的数学原理
矩阵的数学原理涉及到矩阵的运算和变换,是高等代数学中的重要概念。在图形变换中,矩阵起到关键作用,通过矩阵的变换可以改变图形的位置、形状和大小。矩阵的运算是数值分析领域的重要问题,对矩阵进行分解和简化可以简化计算过程。对于一些特殊矩阵,如稀疏矩阵和准对角矩阵,有特定的快速运算算法。
在Matrix Matrix中,矩阵的数学原理同样适用。Matrix提供了缩放、平移、旋转和错切等操作,这些操作对应于特定的矩阵变换。例如,缩放操作对应于矩阵的元素乘以一个标量,平移操作对应于矩阵的元素加上一个偏移量,旋转操作则通过矩阵的置换和缩放来实现。
Matrix的数学原理在实际应用中非常重要。在图形处理、计算机视觉、机器学习等领域,都需要使用到矩阵运算和变换。掌握矩阵的数学原理有助于更好地理解和应用这些技术。
二,3x3矩阵的计算方法:
3x3矩阵的计算方法包括加法、减法、数乘和矩阵乘法。
加法是将两个3x3矩阵对应位置的元素相加,得到一个新的3x3矩阵。减法是将两个3x3矩阵对应位置的元素相减,得到一个新的3x3矩阵。数乘是将一个标量和一个3x3矩阵相乘,得到一个新的3x3矩阵。矩阵乘法是将两个3x3矩阵按照一定的规则相乘,得到一个新的3x3矩阵。
在进行矩阵乘法时,需要按照一定的规则进行计算,即左边矩阵的第一行的元素分别与右边矩阵的第一列的元素相乘,然后求和得到相乘矩阵的第一行的第一个元素。同样地,左边矩阵的第一行的元素分别与右边矩阵的第二列的元素相乘,求和得到相乘矩阵的第一行的第二个元素,以此类推。
另外,还有三阶矩阵乘法的公式:D=a11a22a33+a12a23a31+a13a21a32-a13a22a31-a12a21a33- a11a23a32。这个公式可以帮助我们快速地计算出两个3x3矩阵的乘积。
需要注意的是,在进行矩阵运算时,需要遵循一定的运算规则,如先进行括号内的运算,然后进行加、减、乘等运算,最后进行除法运算。同时,要注意矩阵的维数,即行数和列数,只有当两个矩阵的维数相同时才能进行矩阵运算。
三,四种变换的具体情形
1,平移变换
假定有一个点的坐标是 P_(x_0,y_0)将其移动到P_(x,y) ,再假定在x轴和y轴方向移动的大小分别为:
△x = x - x_0
△y = y - y_0
如下图所示:
不难知道:
x = x_0 + △x
y = y_0 + △y
如果用矩阵来表示的话,就可以写成:
2,旋转变换
围绕坐标原点旋转
假定有一个点的坐标是 P_(x_0,y_0) ,相对坐标原点顺时针旋转 theta后的情形,同时假定P点离坐标原点的距离为r,如下图:
那么,
如果用矩阵,就可以表示为:
3,缩放变换
理论上而言,一个点是不存在什么缩放变换的,但考虑到所有图像都是由点组成,因此,如果图像在x轴和y轴方向分别放大k1和k2倍的话,那么图像中的所有点的x坐标和y坐标均会分别放大k1和k2倍,即:
x = k_1 x x_0
y = k_2 x y_0
用矩阵表示就是:
4,对称变换(翻转)
事实上,我们还可以利用Matrix,进行对称变换。所谓对称变换,就是经过变化后的图像和原图像是关于某个对称轴是对称的。比如,某点 经过对称变换后得到,
如果对称轴是x轴,那么,
x = x_0
y = -y_0
用矩阵表示就是:
如果对称轴是y轴,那么,
x = -x_0
y =y_0
用矩阵表示就是:
如果对称轴是y = x,如图:
四,基本方法解析
1,构造函数
public Matrix()
public Matrix(Matrix src)
构造函数有两个,第一个是直接创建一个单位矩阵,第二个是根据提供的矩阵创建一个新的矩阵(采用deep copy)
单位矩阵如下:
2,平移效果
public void setTranslate
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。