当前位置:   article > 正文

机器学习(八) 生成对抗网络(GAN)

生成对抗网络

前言

  在生成对抗网络(Generative Adversarial Network,简称 GAN)发明之前,变分自编码器(VAE)被认为是理论完备,实现简单,使用神经网络训练起来很稳定,生成的图片逼近度也较高,但是人眼还是可以很轻易地分辨出真实图片与机器生成的图片。但在2014年GAN被提出之后,在之后的几年里面里迅速发展,生成的图片越来越逼真。

1 GAN

1.1 相关介绍

  GAN模型的核心思想就是博弈思想,是生成器(造假者)和判别器(鉴别者)之间的博弈,在提出GAN的原始论文中,作者举了货币制造的例子。即像一台验钞机和一台制造假币的机器之间的博弈,两者不断博弈,博弈的结果假币越来越像真币,直到验钞机无法识别一张货币是假币还是真币为止。

1.2 原理

1.2.1 网络架构

  生成对抗网络包含了两个子网络:生成网络(Generator,简称 G)和判别网络(Discriminator,简称 D),其中生成网络 G 负责学习样本的真实分布,判别网络 D 负责将生成网络采样的样本与真实样本区分开来。
  生成网络G(

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/神奇cpp/article/detail/875897
推荐阅读
相关标签