当前位置:   article > 正文

Transformer架构的原理是什么

transformer架构

Transformer是一种用于序列到序列学习的神经网络架构,它可以并行处理输入序列的所有位置,从而大大加快了训练和推理的速度。它的原理主要涉及到注意力机制和多头注意力(Multi-Head Attention)。

在Transformer中,注意力机制允许模型在序列中的不同位置之间进行转移,从而允许模型在序列中查找相关信息。注意力机制由一个注意力层和一个自注意力层组成,注意力层计算权重并将这些权重应用于输入序列中的每个位置,从而实现注意力机制。

多头注意力是Transformer中的一种重要技术,它允许模型在不同的空间中并行注意力,从而更好地学习序列中的长期依赖关系。这意味着模型可以使用

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/神奇cpp/article/detail/981762
推荐阅读
相关标签
  

闽ICP备14008679号