赞
踩
Qwen-Audio是阿里云研发的大规模音频语言模型(Large Audio Language Model)。Qwen-Audio可以以多种音频(包括说话人语音、自然音、音乐、歌声)和文本作为输入,并以文本作为输出。在Qwen-Audio的基础上,利用对齐机制打造出基于大语言模型的语音AI助手Qwen-Audio-Chat,它支持更灵活的交互方式,包括多音频、多轮问答、创作等能力。支持多种语音场景,包括声音理解和推理、音乐欣赏、多音频分析、多轮音频-文本交错对话以及外部语音工具的使用等。
重要
Qwen-Audio-Cha模型依照LICENSE开源,免费商用需填写商业授权申请。您应自觉遵守第三方模型的用户协议、使用规范和相关法律法规,并就使用第三方模型的合法性、合规性自行承担相关责任。
前往实例创建页。
按照界面提示完成参数配置,创建一台ECS实例。
需要注意的参数如下,其他参数的配置,请参见自定义购买实例。
实例:Qwen-Audio-Chat模型的推理过程需要耗费大量的计算资源,运行时占用大量内存,为了保证模型运行的稳定,实例规格至少需要选择ecs.g8a.4xlarge(64 GiB内存)。
镜像:Alibaba Cloud Linux 3.2104 LTS 64位。
公网IP:选中分配公网IPv4地址,带宽计费模式选择按使用流量,带宽峰值设置为100 Mbps。以加快模型下载速度。
系统盘:Qwen-Audio-Chat的运行需要下载多个模型文件,会占用大量存储空间,为了保证模型顺利运行,建议系统盘设置为100 GiB。
添加安全组规则。
在ECS实例安全组的入方向添加安全组规则并放行22、443、7860端口(用于访问WebUI服务)。具体操作,请参见添加安全组规则。
创建完成后,在ECS实例页面,获取公网IP地址。
说明
公网IP地址用于进行AI对话时访问WebUI服务。
远程连接该ECS实例。
具体操作,请参见通过密码或密钥认证登录Linux实例。
安装Docker。
具体操作,请参见在Alibaba Cloud Linux 3实例中安装Docker。
创建并运行PyTorch AI容器。
龙蜥社区提供了丰富的基于Anolis OS的容器镜像,包括针对AMD优化过的PyTorch镜像,您可以直接使用该镜像直接创建一个PyTorch运行环境。
以下命令首先拉取容器镜像,随后使用该镜像创建一个以分离模式运行的、名为pytorch-amd
的容器,并将用户的家目录映射到容器中,以保留开发内容。
- sudo docker pull registry.openanolis.cn/openanolis/pytorch-amd:1.13.1-23-zendnn4.1
- sudo docker run -d -it --name pytorch-amd --net host -v $HOME:/root registry.openanolis.cn/openanolis/pytorch-amd:1.13.1-23-zendnn4.1
进入容器环境。
sudo docker exec -it -w /root pytorch-amd /bin/bash
重要
后续命令需在容器环境中执行,如意外退出,请使用以上命令重新进入容器环境。如需查看当前环境是否为容器,可以执行cat /proc/1/cgroup | grep docker
查询(有回显信息则为容器环境)。
安装部署Qwen-Audio-Chat所需的软件。
yum install -y git git-lfs wget tmux xz gperftools-libs anolis-epao-release
启用Git LFS。
下载预训练模型需要Git LFS的支持。
git lfs install
创建一个tmux session。
tmux
说明
下载预训练模型耗时较长,且成功率受网络情况影响较大,建议在tmux session中下载,以免ECS断开连接导致下载模型中断。
下载Qwen-Audio-Chat项目源码和预训练模型。
- git clone https://github.com/QwenLM/Qwen-Audio.git
- git clone https://www.modelscope.cn/qwen/Qwen-Audio-Chat.git qwen-audio-chat
查看当前目录。
ls -l
下载完成后,当前目录显示如下。
更换pip下载源。
在安装依赖包之前,建议您更换pip下载源以加速安装。
创建pip文件夹。
mkdir -p ~/.config/pip
配置pip安装镜像源。
- cat > ~/.config/pip/pip.conf <<EOF
- [global]
- index-url=http://mirrors.cloud.aliyuncs.com/pypi/simple/
-
- [install]
- trusted-host=mirrors.cloud.aliyuncs.com
- EOF
安装Python运行依赖。
- yum install -y python3-transformers python-einops
- pip install typing_extensions==4.5.0 tiktoken transformers_stream_generator accelerate gradio
安装ffmpeg。
下载ffmpeg安装包。
说明
ffmpeg安装包下载较慢,建议您直接下载ffmpeg后,上传到当前用户家目录(例如/home/ecs-user/
)下。
wget https://johnvansickle.com/ffmpeg/releases/ffmpeg-6.1-amd64-static.tar.xz
解压并安装ffmpeg。
- tar -xf ffmpeg-6.1-amd64-static.tar.xz
- cp ffmpeg-6.1-amd64-static/{ffmpeg,ffprobe} /usr/local/bin
- rm -rf ffmpeg-6.1-amd64-static*
设置环境变量OMP_NUM_THREADS
和GOMP_CPU_AFFINITY
。
ZenDNN运行库需要针对硬件平台显式设置环境变量OMP_NUM_THREADS
和GOMP_CPU_AFFINITY
。
- cat > /etc/profile.d/env.sh <<EOF
- export OMP_NUM_THREADS=\$(nproc --all)
- export GOMP_CPU_AFFINITY=0-\$(( \$(nproc --all) - 1 ))
- EOF
- source /etc/profile
执行如下命令,开启WebUI服务。
- cd ~/Qwen-Audio
- export LD_PRELOAD=/usr/lib64/libtcmalloc.so.4
- python3 web_demo_audio.py -c=${HOME}/qwen-audio-chat/ --cpu-only --server-name=0.0.0.0 --server-port=7860
当出现如下信息时,表示WebUI服务启动成功。
在浏览器地址栏输入http://<ECS公网IP地址>:7860
,进入Web页面。
单击Upload(上传文件)上传语音文件,然后在Input对话框中,输入对话内容,单击Submit(发送),即可开始语音问答、创作等。
说明
以下示例远非Qwen-Audio-Chat能力的极限,您可以通过更换不同的语音文件和提示词(Prompt),来进一步挖掘Qwen-Audio-Chat的能力。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。