赞
踩
代码笔记
1.导库
- from sklearn import tree
- from sklearn.datasets import load_wine
- from sklearn.model_selection import train_test_split
2. 加载数据,拆分
- wine = load_wine()
- Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data, wine.target, test_size=0.3)
3. 建模,训练
- clf = tree.DecisionTreeClassifier(criterion = 'entropy')
- clf = clf.fit(Xtrain, Ytrain)
- score = clf.score(Xtest, Ytest)
- print(score)
4. 查看特征的重要性
- feature_name = ['酒精','苹果酸','灰','灰的碱性','美','酒精1','苹果酸1','灰1','灰的碱性1','美1','111','222','333']
- clf.feature_importances_ #特征的重要性
- print(list(zip(feature_name, clf.feature_importances_)))
-
- ###############################################################
- print([*zip(feature_name, clf.feature_importances_)])
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。