当前位置:   article > 正文

托普利兹矩阵(T矩阵)及其应用(Matlab demo测试)_matlab生成托普利兹矩阵

matlab生成托普利兹矩阵

1. 概念

托普利兹矩阵,简称为T型矩阵,托普利兹矩阵的主对角线上的元素相等,平行于主对角线的线上的元素也相等;矩阵中的各元素关于次对角线对称,即T型矩阵为次对称矩阵。即 a i j = a j i a_{ij}=a_{ji} aij=aji

2. Matlab简单测试

2.1 生成测试

Matlab中可以用toeplitz(x,y)。它生成一个以 x 为第一列,y 为第一行的托普利兹矩阵。
函数中x=(x1,x2,…,xk) y=(y1,y2,…,yj)为向量形式,代表托普利兹矩阵的第一行、第一列。

x=[1, 2, 3, 3, 4, 4];
y=[1, 3, 3, 2, 3, 4];
T=toeplitz(x,y)
  • 1
  • 2
  • 3

生成结果如下:

ans =

     1     3     3     2     3     4
     2     1     3     3     2     3
     3     2     1     3     3     2
     3     3     2     1     3     3
     4     3     3     2     1     3
     4     4     3     3     2     1
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

2.2 基本性质及原理

其中,最基础的性质,是托普利兹矩阵可以表示为前向位移矩阵和后向位移矩阵之和。

  • 前向位移矩阵
    F = ( 0 1 . . . 0 0 . . . . . . . . . . . . . . . . . . 1 0 . . . 0 0 ) ∈ R n × n F=\left(
    01...00..................10...00
    \right) \in \mathbb{R} ^{n\times n}
    F= 00...01..................00...10 Rn×n
  • 后向位移矩阵
    B = ( 0 0 . . . 0 1 . . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 ) ∈ R n × n B=\left(
    00...01..................00...10
    \right) \in \mathbb{R} ^{n\times n}
    B= 01...00..................10...00 Rn×n
  • 基于性质 前向、后向矩阵幂次和

T = ∑ k − 1 n − 1 t − k B k + ∑ k = 0 n − 1 t k F k    T=\sum_{k-1}^{n-1}{t_{-k}B^k+\sum_{k=0}^{n-1}{t_kF^k}}\,\, T=k1n1tkBk+k=0n1tkFk

式中, t − k t_{-k} tk t k t_k tk分别为(预先定义好的)系数。

2.3 性质验证

  • 简单前向后向矩阵 后向矩阵 的幂次性质
n = 5; % Define the size of the matrix
F = diag(ones(1, n-1), 1); % Create the forward matrix
B = F'
  • 1
  • 2
  • 3

这性质确实有点意思… 位置变化了

>> B^2

ans =

     0     0     0     0     0
     0     0     0     0     0
     1     0     0     0     0
     0     1     0     0     0
     0     0     1     0     0

>> B^3

ans =

     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     1     0     0     0     0
     0     1     0     0     0

>> B^4

ans =

     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     1     0     0     0     0

>> F^2

ans =

     0     0     1     0     0
     0     0     0     1     0
     0     0     0     0     1
     0     0     0     0     0
     0     0     0     0     0

>> F^3

ans =

     0     0     0     1     0
     0     0     0     0     1
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0

>> F^4

ans =

     0     0     0     0     1
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 生成 托普利兹矩阵
n = 5; % Define the size of the matrix
F = diag(ones(1, n-1), 1); % Create the forward matrix
B = F';

% Define the coefficients t_{-k} and t_k
t_neg = [1, 2, 3, 4, 5]; % Example coefficients for t_{-k}
t_pos = [1, 3, 3, 2, 1]; % Example coefficients for t_k

T = zeros(n); % Initialize the Toeplitz matrix

for k = 1:n
    T = T + t_neg(k) * (B^(k-1));
end

for k = 2:n
    T = T + t_pos(k) * (F^(k-1));
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

定义的信息如下:
t_neg = [1, 2, 3, 4, 5]; % Example coefficients for t_{-k}
t_pos = [1, 3, 3, 2, 1]; % Example coefficients for t_k

T =

     1     3     3     2     1
     2     1     3     3     2
     3     2     1     3     3
     4     3     2     1     3
     5     4     3     2     1
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

3. 其他应用总结

3.1 其他性质

  • Python实现版本可以参考哈工大 赵老师的博客。

  • 其他的一些性质,

    • 包括可以高效率的计算卷积…
    • 对于Ax=b的系统(线性代数中),当A为托普利兹矩阵时,可以称其为托普利兹系统, 且此时的系统自由度为2-1而不是n^2, (究其原因,和托普利兹矩阵的形式有关), 因此,可以用Levinson求解方法快速计算
    • 托普利兹矩阵可以被分解,如LU分解中的Bareiss算法

PS: LU分解,顾名思义,L 是单位下三角矩阵, U 是单位上三角矩阵。 LU分解有两种实现,分别是. Gauss消去法. 待定系数法.

    • 关于对称块矩阵(Block Toepliz)和对称矩阵(Toepliz) 虽然托普利茨矩阵具有与对角线恒定性相关的特定特征,但对称块矩阵的特征在于其子矩阵的对称性。

这些具体的性质,等到需要用的时候,再推导吧…

3.2 文献阅读看到的

对于一些工程应用,最近在一篇论文中,就用到了这个性质,需要分析一个能量传播矩阵,这个能量传播矩阵可以表示为一个近似的对称块托普利兹矩阵,因此,可以利用其卷积性质,得到不变卷积核:
在这里插入图片描述

参考资料

【1】-csdn 托普利兹矩阵

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/秋刀鱼在做梦/article/detail/761326
推荐阅读
相关标签
  

闽ICP备14008679号