赞
踩
在各种数据结构(线性表、树等)中,记录在结构中的相对位置是随机的。因此在机构中查找记录的时需要进行一系列和关键字的比较。这一类的查找方法建立在“比较”的基础上。查找的效率依赖于查找过程中所进行的比较次数。
之前我们介绍的各种基于比较的树查找算法,这些查找算法的效率都将随着数据记录数的增长而下降。仅仅是有的比较慢(时间复杂度为O(n)),有的比较快(时间复杂度是O(logn))而已。这些查找算法的平均查找长度是在一种比较理想的情况下获得的。在实际应用当中,对数据结构中数据的频繁增加和删除将不断地改变着数据的结构。这些操作将可能导致某些数据结构退化为链表结构,那么其性能必然将下降。为了避免出现这种情况而采取的调整措施,又不可避免的增加了程序的复杂程度以及操作的额外时间。
哈希表
理想的情况是 希望不经过任何比较,一次存取便能得到所查的记录 ,那就必须在记的存储位置和它的关键字之间建立一个确定的对应关系f,使每个关键字和一个唯一的存储位置相对应。因而在查找时,只要根据这个对应关系f找到给定值K的像f(K)。由此,不需要进行比较便可直接取得所查记录。在此,我们称这个对应关系为哈希(Hash)函数,按这个思想建立的表为 哈希表 。哈希树的理论基础
插入
我们选择质数分辨算法来建立一棵哈希树。
选择从2开始的连续质数来建立一个十层的哈希树。第一层结点为根结点,根结点下有2个结点;第二层的每个结点下有3个结点;依此类推,即每层结点的子节点数目为连续的质数。到第十层,每个结点下有29个结点。
同一结点中的子结点,从左到右代表不同的余数结果。
例如:第二层结点下有三个子节点。那么从左到右分别代表:除3余0,除3余1,除3余2.
对质数进行取余操作得到的余数决定了处理的路径。
结点结构:结点的关键字(在整个树中是唯一的),结点的数据对象,结点是否被占据的标志位(标志位为真时,关键字才被认为是有效的),和结点的子结点数组。
哈希树的节点结构
下面我们以随机的10个数的插入为例,来图解HashTree的插入过程,这个史上最清晰的图解,你一定能看的明白^_^
有读者可能有疑问,如果一直冲突下去怎么办?首先,若关键字是整型,我们的10层哈希树完全可以分辨出来它们,这是质数分辨算法决定的。
(我们其实也可以把所有的键-值节点放在哈希树的第10层叶节点处,这第10层的满节点数就包含了所有的整数个数,但是如果这样处理的话,所有的非叶子节点作为键-值节点的索引,这样使树结构庞大,浪费空间)
【这里没有说的太清楚,此图是以2开始的连续质数创建的,即:从上到下的层级中的每个节点中的子树个数为2、3、5、7、11、13、17、19、23、29。第一层中的每个节点的子树个数为2,第二层中的每个节点子树个数为5.。。。。
上图中的子树上的数字,是其父节点的子树指针数组的索引值】
查找
哈希树的节点查找过程和节点插入过程类似,就是 对关键字用质数序列取余,根据余数确定下一节点的分叉路径,直到找到目标节点 。
删除
哈希树的节点删除过程也很简单,哈希树在删除的时候,并不做任何结构调整。
优点
1、结构简单
从哈希树的结构来说,非常的简单。每层节点的子节点个数为连续的质数。子节点可以随时创建。因此哈希树的结构是动态的,也不像某些哈希算法那样需要长时间的初始化过程。哈希树也没有必要为不存在的关键字提前分配空间。
需要注意的是哈希树是一个单向增加的结构,即随着所需要存储的数据量增加而增大。即使数据量减少到原来的数量,但是哈希树的总节点数不会减少。这样做的目的是为了避免结构的调整带来的额外消耗。
2、查找迅速
从算法过程我们可以看出,对于整数,哈希树层级最多能增加到10。因此最多只需要十次取余和比较操作,就可以知道这个对象是否存在。这个在算法逻辑上决定了哈希树的优越性。
一般的树状结构,往往随着层次和层次中节点数的增加而导致更多的比较操作。操作次数可以说无法准确确定上限。而哈希树的查找次数和元素个数没有关系。如果元素的连续关键字总个数在计算机的整数(32bit)所能表达的最大范围内,那么比较次数就最多不会超过10次,通常低于这个数值。
3、结构不变
从删除算法中可以看出,哈希树在删除的时候,并不做任何结构调整。这个也是它的一个非常好的优点。常规树结构在增加元素和删除元素的时候都要做一定的结构调整,否则他们将可能退化为链表结构,而导致查找效率的降低。哈希树采取的是一种“见缝插针”的算法,从来不用担心退化的问题,也不必为优化结构而采取额外的操作,因此大大节约了操作时间。
缺点
1、非排序性
哈希树不支持排序,没有顺序特性。如果在此基础上不做任何改进的话并试图通过遍历来实现排序,那么操作效率将远远低于其他类型的数据结构。
关于超长字符串的问题
【关于MD5】
维基链接: http://zh.wikipedia.org/wiki/MD5应用
哈希树可以广泛应用于那些需要对大容量数据进行快速匹配操作的地方。例如:数据库索引系统、短信息中的收条匹配、大量号码路由匹配、信息过滤匹配。哈希树不需要额外的平衡和防止退化的操作,效率十分理想。
【参考】
http://baike.baidu.com/view/10403049.htm
http://wenku.baidu.com/view/16b2c7abd1f34693daef3e58.html
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。