当前位置:   article > 正文

浙大知识图谱基础:学习笔记_知识的结构化表示主要有符号表示和向量表示两类方法

知识的结构化表示主要有符号表示和向量表示两类方法

0 基础知识

  • 知识图谱中,知识的结构化表示主要有符号表示向量表示两类方法。符号表示包括:一阶谓词逻辑,语义网络,描述逻辑和框架系统等。当前主要采用基于图的符号化知识表示,最常用的是有向标记图

  • 有向标记图分为:属性图(property graph)和RDF图(Resource Description Framework,RDF)。

    • 属性图:图数据库Neo4j实现的图结构表示模型,工业界最常用的知识图谱建模方法。优点:允许为实体或边添加属性,易于存储和查询。缺点:缺乏工业标准规范的支持,不关注更深层次的语义表达、不支持符号逻辑推理。
      • 顶点(vertex)/节点(node)
      • 边(edge)/关系(relation):有向边和对应标签
      • 标签(label)
      • 属性(property):键值对
    • RDF:W3C推出的语义数据交换标准与规范,支持逻辑推理。RDF的基本组成单元是 (S,P,O)三元组,(Subject主,Predicate谓,Object宾)。
      • 在RDF的基础上还提供了RDFS(Resource Description Framework Schema)。定义了Class、subClass、Property、subProperty、domain、range、type…等概念。
  • OWL(Ontology Web Language): 在RDFS的基础上增加了更多的语义表达构建,如一对多、多对一、多对多等关系,全称量词和存在量词,互反关系、传递关系、自反关系、对称性等。

1 图数据存储

  • 知识图谱的存储分为:基于关系数据库的存储和基于原生图的存储。图数据库对于知识图谱并非必须项。
  • 考虑存储结构主要考虑:存储的物理结构、存储的性能问题、图的查询问题。

基于关系数据库的存储

  • 一般不用这种方式,除非场景非常简单。
  • 图上的查询语言:SPARQL。
  • 最简单的存储:SPO三元组
  • 属性表存储:把同一实体类型的属性组织为一张表进行存储。优点:self-join减少了。缺点:空值多,对Subject聚类比较复杂,不易处理多值属性。

  • 二元表存储:对三元组按属性分表。优点:无空值,不用聚类,对subject-subject-join性能好,缺点:insert代价高,subject-object join性能差。
  • 全索引结构存储:

基于原生图的存储

  • Neo4j 定义了图查询语言:Cypher。
  • 实现原理:免索引邻接(index-free adjacency),为每个节点维护了一组指向相邻节点的引用,这个引用可以看作相邻节点的微索引。



2 知识抽取

  • 文本知识抽取:命名实体识别、概念抽取、关系抽取、事件抽取。

命名实体识别

  • 最朴素的做法是定义规则进行正则匹配,但规则难以维护。因此一般用AI来进行序列标注。

  • 基于机器学习的方法有:HMM、CRF;目前主要研究基于深度学习的序列标注算法,如CNN/RNN/Transformer,如:BiLSTM+CRF,基于预训练模型。

  • 参考文献:《A Survey On Deep Learning for Named Entity Recognition》(TKDE2020)

关系抽取与属性补全




概念抽取


事件识别与抽取






知识抽取前沿问题






3 知识图谱推理



基于本体的推理




基于规则的推理







基于embedding的推理




基于规则学习的推理

本章后续略。

4 知识融合




本体匹配


  • 距离度量:编辑距离、汉明距离、字串相似度、dice距离、jaccard系数等等;

实体对齐



  • 知识融合工具:silk


技术前沿



5 基于知识图谱的智能问答系统







基于查询模板的知识图谱问答

  • TBSL














基于语义解析的知识图谱问答

  • 一步解析的困难:
  • 更合理的方式是两步解析:






  • 短语重写:

基于检索排序的知识图谱问答


  • 实体链接






基于深度学习的知识图谱问答








6 图算法与图数据分析

图神经网络与图表示学习


























图神经网络与知识图谱










7 知识图谱前沿

多模态知识图谱





知识图谱与语言预训练







事理知识图谱









知识图谱与低资源学习











Reference

  1. 浙大 知识图谱
  2. 知识图谱:知识表示
声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号