当前位置:   article > 正文

Python 算法交易实验73 QTV200第二步: 数据清洗并写入ClickHouse

Python 算法交易实验73 QTV200第二步: 数据清洗并写入ClickHouse

说明

先检查一下昨天启动的worker是否正常工作,然后做一些简单的清洗,存入clickhouse

内容

1 检查数据

from Basefuncs import * 
# 将一般字符串转为UCS 名称
def dt_str2ucs_blockname(some_dt_str):
    some_dt_str1   =some_dt_str.replace('-','.').replace(' ','.').replace(':','.')
    return '.'.join(some_dt_str1.split('.')[:4])
'''
dt_str2ucs_blockname('2024-06-24 09:30:00')
'2024.06.24.09'
'''
# 测试队列声明
qm = QManager(redis_agent_host = 'http://192.168.0.4:xx/',redis_connection_hash = None,q_max_len= 1000000, batch_size=10000)
qm.info()
target_stream_name = 'xxx'
qm.stream_len(target_stream_name)
2804
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

获取数据(使用单worker,模式比较简单且性能足够)

data = qm.xrange(target_stream_name)['data']
data_df = pd.DataFrame(data)
keep_cols = ['rec_id', 'data_dt','open', 'close','high','low','vol', 'amt', 'data_source','code','market']
data_df1 = data_df[keep_cols].dropna().drop_duplicates(['rec_id'])

# 第一次操作,把之前无关的数据删掉
data_df1 = data_df1[data_df1['data_dt'] >='2024-06-24 00:00:00']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

在这里插入图片描述
向clickhouse发起query,请求每个etf的最大时间,之后要使得新增的数据大于这个时间,另外目标表的字段形如
在这里插入图片描述
这是之前做的设计,因为隔的时间有点久都有点忘了。不过这个设计是合理的,后面会看到。

要做的转换也很简单:

  • 1 将时间字符转为时间戳
  • 2 从日期中分解出shard、part、block和brick

转换段

import time

data_df1['ts'] = data_df1['data_dt'].apply(inverse_time_str).apply(int)

data_df1['brick'] = data_df1['data_dt'].apply(dt_str2ucs_blockname)
data_df1['block'] =data_df1['brick'].apply(lambda x: x[:x.rfind('.')])
data_df1['part'] =data_df1['block'].apply(lambda x: x[:x.rfind('.')])
data_df1['shard'] =data_df1['part'].apply(lambda x: x[:x.rfind('.')])

data_df1['pid'] = data_df1['code'].apply(str) + '_' + data_df1['ts'].apply(str)

keep_cols1 = ['data_dt','open','close','high','low', 'vol','amt', 'brick','block','part', 'shard', 'code','ts', 'pid']
data_df2 =data_df1[keep_cols1]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

在这里插入图片描述

今天就到这里吧,明晚接着写。

Go on …

昨天疏忽了,数据不应该直接存库,而是应该整理好之后送到队列。然后由默认的worker将数据搬到clickhouse.

2 存数规则

第二步的输入队列BUFF.xxxstream_in,输出队列BUFF.xxx.stream_out
第一次需要确保对应数据表的存在。clickhouse对数值的要求比较严格,为了避免麻烦,统一设置成Float32。(这样可以用统一的同步worker)。另外clickhouse不支持删除数据,这点倒是比较特别。
在这里插入图片描述
但可以支持全部删除数据(保留数据结构) TRUNCATE table market_data_v2

create_table_sql = '''
CREATE TABLE market_data_v2
(
    data_dt String,
    open Float32,
    close Float32,
    high Float32,
    low Float32,
    vol Float32,
    amt Float32,
    brick String,
    block String,
    part String,
    shard String,
    code String,
    ts Float32,
    pid String
)
ENGINE = MergeTree
ORDER BY (ts )
'''

click_para = gb.getx('sp_global.buffer.lan.xxx.xxx.para')
chc = CHClient(**click_para)
chc._exe_sql(create_table_sql)
chc._exe_sql('show tables')
[('market_data',), ('market_data_v2',)]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

etl_worker.py

# 0 记录日志
import logging
from logging.handlers import RotatingFileHandler

logger = logging.getLogger('MyLogger')
handler = RotatingFileHandler('/var/log/workers.log', maxBytes=1024*1024*100, backupCount=5)
logger.addHandler(handler)
logger.setLevel(logging.INFO)

# ---------------------------------------- 设置日志

from Basefuncs import * 
def tuple_list2dict(tuple_list):
    """
    将包含三个元素的tuple列表转换为字典。
    
    参数:
    tuple_list (List[Tuple[K, V1, V2]]): 包含键和两个值的tuple的列表。
    
    返回:
    Dict[K, Tuple[V1, V2]]: 转换后的字典,其中值是包含两个元素的tuple。
    """
    return {key:value1 for key, value1 in tuple_list}

# 将一般字符串转为UCS 名称
def dt_str2ucs_blockname(some_dt_str):
    some_dt_str1   =some_dt_str.replace('-','.').replace(' ','.').replace(':','.')
    return '.'.join(some_dt_str1.split('.')[:4])
'''
dt_str2ucs_blockname('2024-06-24 09:30:00')
'2024.06.24.09'
'''
# ---------------------------------------- 基本函数

# 测试队列声明
qm = QManager(redis_agent_host = 'http://192.168.0.4:xx/',redis_connection_hash = None,q_max_len= 1000000, batch_size=10000)
qm.info()
source_stream_name ='stream_in'
target_stream_name ='stream_out'
source_stream_len =  qm.stream_len(source_stream_name)
target_stream_len = qm.stream_len(target_stream_name)
print('source',source_stream_len)
print('target', target_stream_len)
# qm.ensure_group(target_stream_name)
cur_dt_str = get_time_str1()
if source_stream_len:
    is_source_recs = True
else:
    is_source_recs = False
    logger.info('%s %s source No Recs' %(cur_dt_str,'etl_worker'))
# 获取数据(使用单worker,模式比较简单且性能足够)

# ---------------------------------------- 队列取数,有数据才执行下面
if is_source_recs:

	
	# ---------------------------------------- 取数,取出消息列表和需要的列
    # worker 30 秒启动一次
    data = qm.xrange(source_stream_name)['data']

    data_df = pd.DataFrame(data)
    msg_id_list = list(data_df['_msg_id'])
    keep_cols = ['rec_id', 'data_dt','open', 'close','high','low','vol', 'amt', 'data_source','code','market']
    data_df1 = data_df[keep_cols].dropna().drop_duplicates(['rec_id'])

    # 第一次操作,把之前无关的数据删掉
    # data_df1 = data_df1[data_df1['data_dt'] >='2024-06-24 00:00:00']

    import time

    data_df1['ts'] = data_df1['data_dt'].apply(inverse_time_str).apply(int)

    data_df1['brick'] = data_df1['data_dt'].apply(dt_str2ucs_blockname)
    data_df1['block'] =data_df1['brick'].apply(lambda x: x[:x.rfind('.')])
    data_df1['part'] =data_df1['block'].apply(lambda x: x[:x.rfind('.')])
    data_df1['shard'] =data_df1['part'].apply(lambda x: x[:x.rfind('.')])

    data_df1['pid'] = data_df1['code'].apply(str) + '_' + data_df1['ts'].apply(str)

    keep_cols1 = ['data_dt','open','close','high','low', 'vol','amt', 'brick','block','part', 'shard', 'code','ts', 'pid']
    data_df2 =data_df1[keep_cols1]
	
	# ------------------------------------- 获取当前数据库已有的数据

    # 获取各code最大值
    click_para = {'database': 'xx',
        'host': '192.168.0.4',
        'name': 'xx',
        'password': 'xx',
        'port': xxx,
        'user': 'xx'}
    chc = CHClient(**click_para)

    '''
    这个 SQL 语句的作用是按照 `code` 分组,并为每个 `code` 找到对应的最新日期(`data_dt`),这个最新日期是基于 `ts` 字段的最大值来确定的。`argMax` 函数在这里用于找到每个分组中 `ts` 值最大时对应的 `data_dt` 值。

    具体来说,`argMax(data_dt, ts)` 会返回每个 `code` 分组中使得 `ts` 达到最大值的 `data_dt` 值。这意味着对于每个 `code`,查询会找到 `ts` 字段的最大值,并返回对应的 `data_dt` 值,即每个 `code` 的最新数据日期。

    最终,这个查询会返回一个结果集,其中包含每个 `code` 以及对应的最新数据日期(`last_data_dt`)。这对于分析每个代码的最新市场数据非常有用。
    '''

    latest_sql = '''
    SELECT
        code,
        argMax(data_dt, ts) AS last_data_dt
    FROM
        market_data_v2
    GROUP BY
        code
    '''
    # 更新时
    latest_date_tuple_list = chc._exe_sql(latest_sql)
    latest_date_dict = tuple_list2dict(latest_date_tuple_list)
	# ------------------------------------- 使用时间进行过滤
    # 筛选新数据
    data_df2['existed_dt'] = data_df2['code'].map(latest_date_dict).fillna('')

    output_sel = data_df2['data_dt'] > data_df2['existed_dt']
    output_df = data_df2[output_sel][keep_cols1]
    output_data_listofdict = output_df.to_dict(orient='records')
    output_data_listofdict2 = slice_list_by_batch2(output_data_listofdict, qm.batch_size)
    for some_data_listofdict in output_data_listofdict2:
        qm.parrallel_write_msg(target_stream_name, some_data_listofdict)

    del_msg = qm.xdel(source_stream_name, msg_id_list)
    logger.info('%s %s del source %s Recs' %(cur_dt_str,'etl_worker',del_msg['data'] ))

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127

将该脚本发布为任务,30秒执行一次同步。

exe_qtv200_etl_worker.sh

#!/bin/bash

# 记录
# sh /home/test_exe.sh com_info_change_pattern running

# 有些情况需要把source替换为 .
# . /root/anaconda3/etc/profile.d/conda.sh
# 激活 base 环境(或你创建的特定环境)
source /root/miniconda3/etc/profile.d/conda.sh

#conda init
conda activate base

cd  /home/workers && python3 etl_worker.py
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

存数成功,后续就自动运行了。
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/空白诗007/article/detail/776854
推荐阅读
相关标签
  

闽ICP备14008679号