赞
踩
- from torchvision import transforms
- from PIL import Image
-
- img_path = "images/热巴1.jpg" # 相对路径
- img = Image.open(img_path)
- print(img) # PIL Image数据类型
- tensor_trans = transforms.ToTensor() # 实例化
- tensor_img = tensor_trans(img) # 在括号中按ctrl+p可以查看需要传入什么参数
- print(tensor_img) # tensor数据类型
- output[channel] = (input[channel] - mean[channel]) / std[channel]
- # 输出 = 输入 - 均值/ 标准差
- from PIL import Image
- from torch.utils.tensorboard import SummaryWriter
- from torchvision import transforms
-
- writer = SummaryWriter("logs")
- img_path = "images/热巴1.jpg"
- img = Image.open(img_path)
- # ToTensor 转换类型
- trans_totensor = transforms.ToTensor()
- img_tensor = trans_totensor(img)
- writer.add_image("热巴", img_tensor)
- # Normalize 归一化
- print(img_tensor[0][0][0]) # 0层0行0列的像素
- trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) # 参数:均值,标准差
- img_norm = trans_norm(img_tensor)
- print(img_norm[0][0][0]) # 改变后,0层0行0列的像素
- writer.add_image("Normalize", img_norm)
- # Resize 设置大小
- print(img.size) # 图片大小
- trans_resize = transforms.Resize((512, 512))
- img_resize = trans_resize(img) # 返回的还是PIL image
- print(img.resize)
- img_resize = trans_totensor(img_resize) # 转化为totensor
- writer.add_image("Resize", img_resize)
- # Compose - resize第二种用法
- trans_resize_2 = transforms.Resize(512) # 等比缩放
- tran_compose = transforms.Compose([trans_resize_2, trans_totensor]) # 参数为数列,进行两种变换
- img_resize2 = tran_compose(img)
- writer.add_image("Compose", img_resize2)
-
- writer.close()
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。