当前位置:   article > 正文

*算法训练(leetcode)第三十一天 | 1049. 最后一块石头的重量 II、494. 目标和、474. 一和零

*算法训练(leetcode)第三十一天 | 1049. 最后一块石头的重量 II、494. 目标和、474. 一和零

*1049. 最后一块石头的重量 II

leetcode题目地址

本题与分割等和子集类似,要达到碰撞最后的石头重量最小,则尽可能把石头等分为两堆。

时间复杂度: O ( m ∗ n ) O(m * n) O(mn)
空间复杂度: O ( n ) O(n) O(n)

// c++
class Solution {
public:
    int lastStoneWeightII(vector<int>& stones) {
        int sum = 0;
        for(int i=0; i<stones.size(); i++){
            sum += stones[i];
        }
        int target = sum/2;
        vector dp(target+1, 0);
        for(int i=0; i<stones.size(); i++){
            for(int j=target; j>=stones[i]; j--){
                dp[j] = max(dp[j], dp[j-stones[i]]+stones[i]);
            }
        }
        return sum - dp[target] - dp[target];
    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

*494. 目标和

leetcode题目地址

nums中元素初始均为正,先求其和sum。若|target|>sum,则无解。

需要推导出递推公式:设“+”数之和为X,则“-”数之和就是sum-X,其中,sum和target为已知。
可得递推公式: X − ( s u m − X ) = t a r g e t X-(sum-X) = target X(sumX)=target
解得: X = ( t a r g e t + s u m ) / 2 X = (target + sum) / 2 X=(target+sum)/2

因此, (target + sum) % 2 != 0时 无解。

一维dp数组记录背包容量为j时可以组成target的方案数量。

例如:target = 5

  • 当前已有1,则有dp[4]种方案
  • 当前已有2,则有dp[3]种方案
  • 当前已有k,则有dp[target-k]种方案

时间复杂度: O ( n ∗ m ) O(n*m) O(nm)
空间复杂度: O ( n ) O(n) O(n)

// c++
class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int target) {
        
        int sum = 0;
        for(int i=0; i<nums.size(); i++){
            sum += nums[i];
        }
        if(fabs(target)>sum) return 0;
        if((sum+target)%2!=0) return 0;
        vector<int> dp((target+sum)/2+1, 0);
        dp[0] = 1;
        for(int i=0; i<nums.size(); i++){
            for(int j=(target+sum)/2; j>=nums[i]; j--){
                dp[j] += dp[j-nums[i]]; 
            }
        }
        return dp[(target+sum)/2];

    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

474. 一和零

leetcode题目地址

使用二维dp数组,横纵坐标分别代表0和1的背包容量,即dp[i][j]代表至多包含i个0和j个1的最多子串个数。

状态转移方程: d p [ i ] [ j ] = m a x ( d p [ i ] [ j ] , d p [ i − z e r o N u m ] [ j − o n e N u m ] + 1 ) dp[i][j] = max( dp[i][j], dp[i-zeroNum][j-oneNum]+1 ) dp[i][j]=max(dp[i][j],dp[izeroNum][joneNum]+1)

时间复杂度: O ( m ∗ n ∗ k ) O(m*n*k) O(mnk)
空间复杂度: O ( n ∗ m ) O(n*m) O(nm)

// c++
class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<int> zeros(strs.size(), 0);
        vector<int> ones(strs.size(), 0);
        
        for(int i=0; i<strs.size(); i++){
            for(int j=0; j<strs[i].size(); j++){
                if(strs[i][j] == '0') zeros[i]++;
                else ones[i]++;
            }
        }
        vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
        for(int k=0; k<strs.size(); k++){
            for(int i=m; i>=zeros[k]; i--){
                for(int j=n; j>=ones[k]; j--){
                    dp[i][j] = max(dp[i][j], dp[i-zeros[k]][j-ones[k]]+1);
                }
            }
        }
        return dp[m][n];


    }
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/空白诗007/article/detail/908699
推荐阅读
相关标签
  

闽ICP备14008679号