当前位置:   article > 正文

车辆轨迹预测系列 (二):常见数据集介绍_轨迹预测数据集

轨迹预测数据集

车辆轨迹预测系列 (二):常见数据集介绍


image-20240621113630003

  1. Dataset:数据集名称及参考文献编号。
  2. Year:数据集发布的年份。
  3. Agents:数据集中涉及的代理对象,包括行人(pedestrians)、骑行者(cyclists)和车辆(vehicles)。
  4. Sensors:数据集中使用的传感器类型,包括激光雷达(lidar)、摄像头(camera)和无人机(drone)。
  5. Scene:数据采集的场景类型,包括城市(urban)和高速公路(highway)。
  6. Duration and tracking quantity:数据集的持续时间和跟踪数据的数量。包括驾驶场景的数量、数据时长、车辆数量等。
  7. Data type:数据的类型,包括轨迹(trajectories)、高清地图(HD map)、图像(image)、点云(point cloud)等。
  8. Typical methods:针对该数据集常用的典型方法或模型。

详细分析

1、NuScenes (2020):

  • Agents:行人、骑行者、车辆
  • Sensors:激光雷达、摄像头
  • Scene:城市
  • Duration and tracking quantity:1000个驾驶场景
  • Data type:轨迹、高清地图
  • Typical methods:MHA-JAM, Trajectron++
  • Download Link: nuScenes Dataset
  • Paper Linkhttps://arxiv.org/abs/1903.11027 nuScenes: A multimodal dataset for autonomous driving

优点:

  • 多模态数据:包括雷达、激光雷达(LiDAR)、摄像头和GPS数据。
  • 高质量标注:详细的目标检测和跟踪,包含场景理解、行为预测和3D物体检测。
  • 场景丰富:包括城市和高速公路场景,覆盖多种天气和时间条件。

缺点:

  • 数据量较大:需要较大的存储和计算资源。
  • 标注成本高:数据标注的工作量大,成本较高。

适用场景:

  • 适合需要多传感器融合、场景理解和行为预测的研究和开发工作。
  • 高质量的数据需求,尤其是在复杂城市环境中的自动驾驶开发。

详细介绍

数据集是一个带有3d对象注释的大规模自动驾驶数据集。

●全传感器套件(1倍激光雷达,5倍雷达,6倍摄像头,IMU, GPS)

●1000个20秒的场景

●140万张相机图像

●39万次激光雷达扫描

●两个不同的城市:波士顿和新加坡

●左侧与右侧交通

●详细地图信息

●1.4M 3D边框手动标注23个对象类

●新增:为32个类别手动标注了1.1亿个激光雷达点

1、下载

完整的nuScenes数据集包含1000个场景,Mini中包含10个场景

image-20240621180944566

顺带一提,这里面还有一个nuScenes预测任务的比赛

image-20240621181320329

预测nuScenes数据集中物体的未来轨迹。 轨迹是x-y位置的序列。对于这个挑战,预测时间为6秒,采样时间为 2赫兹。

image-20240621180229101

2、说明

image-20240621212806448

2、Waymo Open Dataset (2020):

优点:

  • 高质量的LiDAR数据:提供了丰富的3D点云数据,标注精确。
  • 开放数据集:数据集开放,易于获取和使用。
  • 多样化场景:涵盖城市道路和高速公路,支持多种驾驶场景。

缺点:

  • 数据规模大:需要较高的计算和存储能力。
  • 标注复杂:高精度的标注要求较高的处理和计算资源。

适用场景:

  • 适用于需要高质量LiDAR数据和复杂场景理解的研究。
  • 特别适合3D物体检测、跟踪和行为预测算法的开发。
1、介绍

官方数据集中包含两类MotionPreception,由于本文重点在于轨迹预测,因此仅介绍Motion数据

image-20240621183532502

**Motionhttps://waymo.com/open/data/motion/**用于Sim Agents (2024 version), Motion Prediction (2024 version), Occupancy and Flow Prediction (2024 version), and Interaction Prediction.等内容

image-20240621183859899

**Perceptionhttps://waymo.com/open/data/perception/**用于 3D Semantic Segmentation, 3D Camera-Only Detection, Real-time 3D Detection, Real-time 3D Tracking, 2D Detection, 2D Tracking, and Domain Adaptation.等内容

image-20240621183653478

2、概述

动作数据集以包含协议缓冲区数据的分片TFRecord格式文件的形式提供。数据被分成训练集、测试集和验证集,其中70%的训练集、15%的测试集和15%的验证集。该数据集由103354个片段组成,每个片段包含20秒的10Hz目标轨迹和片段所覆盖区域的地图数据。这些片段被进一步分解为9秒的窗口(1秒的历史数据和8秒的未来数据),这些窗口有不同的重叠。数据以两种形式提供。第一种形式存储为场景协议缓冲区。第二种形式将场景原型转换为tf。示例protos包含用于构建模型的张量。这两种格式的详细信息在本页的末尾。

训练集或验证集中的每9秒序列都包含1秒的历史数据、1个当前时间的样本和8秒的未来数据,采样频率为10 Hz。这对应于10个历史样本、1个当前时间样本和80个未来样本,总共91个样本。测试集隐藏了总共11个样本(10个历史样本和1个当前时间样本)的真实未来数据。

Scenario Proto format 场景原型格式

https://images.ctfassets.net/e6t5diu0txbw/5F0OTYxcAhO8AFOqWSinuY/90c849459a962141d105ea120de30168/unnamed.gif?fm=webp

3、下载

需要注册账号选择需要的数据集下载即可

image-20240621185206411

4、教程

如果您想要直接进入,请查看这里的教程。Github repo还包括一个快速入门,其中包含Waymo开放数据集支持代码的安装说明。

https://github.com/waymo-research/waymo-open-dataset/blob/master/tutorial/tutorial_motion.ipynb

5、参考

3、Lyft Level 5 (2020):

  • Agents:行人、骑行者、车辆
  • Sensors:激光雷达、摄像头
  • Scene:城市
  • Duration and tracking quantity:1000+小时,从23辆车中收集16K英里的数据
  • Data type:轨迹、高清地图
  • Typical methods:Graph-LSTM
  • Download Link: Lyft Level 5 Dataset
  • Paper Link: https://proceedings.mlr.press/v155/houston21a.html One Thousand and One Hours: Self-driving Motion Prediction Dataset

优点:

  • 多传感器数据:包括摄像头、雷达和LiDAR数据。
  • 城市环境:重点覆盖城市环境,适合城市自动驾驶研究。
  • 高精度标注:标注数据详细,支持多种任务。

缺点:

  • 需要高性能计算:处理数据的计算资源需求较高。

适用场景:

  • 适用于城市环境下的自动驾驶研究和开发,特别是多传感器数据融合和场景理解。
1、官方
2、数据集

image-20240621193222612

3、备注

这个项目视乎已终止且未得到积极维护

image-20240621193252893

image-20240621193319386

4、Argoverse (2019):

  • Agents:车辆
  • Sensors:激光雷达、摄像头
  • Scene:城市
  • Duration and tracking quantity:324,557个有趣的车辆轨迹,1000个驾驶小时
  • Data type:轨迹、高清地图
  • Typical methods:VectorNet, LaneRCNN
  • Download Link: Argoverse Dataset
  • Paper Link: https://arxiv.org/abs/2301.00493Argoverse 2: Next Generation Datasets for Self-Driving Perception and Forecasting

优点:

  • 多样化的场景:包括城市和高速公路环境。
  • 丰富的标注:提供了高质量的标注,涵盖对象检测、轨迹预测等任务。
  • 数据格式标准化:数据格式标准化,便于使用和开发。

缺点:

  • 数据规模大:需要较多的存储和计算资源。
  • 标注成本高:数据标注工作量大。

适用场景:

  • 适合复杂场景下的自动驾驶算法开发,特别是在城市环境中的应用研究。
  • 强调场景理解和轨迹预测的任务。
1、数据下载

Argoverse包含两个版本Argoverse 1Argoverse 2

image-20240621195902545

点击下载

image-20240621200155449

https://www.argoverse.org/av2.html#download-link

image-20240621200255481

image-20240621212949349

2、参考

5、INTERACTION (2019):

  • Agents:车辆、行人
  • Sensors:无人机、摄像头
  • Scene:城市、高速公路
  • Duration and tracking quantity:11个地点,40,000辆车
  • Data type:轨迹、高清地图
  • Typical methods:IPTM
  • Download Link: INTERACTION Dataset
  • Paper Link: https://arxiv.org/abs/1910.03088 INTERACTION Dataset: An INTERnational, Adversarial and Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic Maps

优点:

  • 专注于行为预测:特别适合研究交通参与者之间的互动和行为预测。
  • 多场景数据:涵盖多种场景和交通情况,数据丰富。

缺点:

  • 数据标注需求高:高质量的标注需要较多的人力和时间。

适用场景:

  • 适合行为预测和交通参与者互动研究,尤其是在复杂交通场景中的应用。
1、数据请求
  • 特点: INTERACTION 数据集包含各种交通场景下的车辆轨迹数据,涵盖城市交叉口、环形交叉口等多样场景,适合研究车辆间交互影响的预测问题。
  • 链接: INTERACTION Dataset
  • 备注:需要单独请求,随后会发到邮箱

image-20240620175623802

image-20240621201342111

6、HighD (2018):

  • Agents:车辆
  • Sensors:无人机
  • Scene:高速公路
  • Duration and tracking quantity:110500辆车,147驾驶小时
  • Data type:轨迹、车道
  • Typical methods:MHA-LSTM
  • Download Link: HighD Dataset
  • Paper Link: https://arxiv.org/abs/1910.03088 The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems

优点:

  • 高速公路数据:专注于高速公路场景,数据集质量高。
  • 数据标注细致:包括多种车辆和道路标志的标注,适合路径规划研究。

缺点:

  • 数据场景有限:主要集中在高速公路场景,适用范围有限。

适用场景:

  • 适合高速公路场景下的自动驾驶研究和路径规划算法开发。
1、介绍

image-20240621201620741

2、数据请求

按照官方的要求,需要填写申请表,笔者正在申请

image-20240621201726617

7、Apolloscape (2018):

优点:

  • 多传感器数据:包括摄像头、LiDAR和雷达数据。
  • 数据覆盖广:涵盖城市、农村和高速公路场景,数据丰富。

缺点:

  • 数据标注复杂:标注过程复杂,需要较高的技术支持。
  • 数据处理要求高:处理和存储数据需要较高的计算资源。

适用场景:

  • 适合多场景下的自动驾驶研究,特别是需要多传感器数据融合的应用。
1、数据下载

image-20240621202824709

image-20240621202938873

image-20240621202912095

我们的轨迹数据集包括基于相机的图像, 激光雷达扫描点云,并手动注释轨迹。它被收集在各种 照明条件和交通密度。更具体地说,它包含高度复杂的流量 车流中混杂着车辆、乘客和行人。

2、数据请求

官方提供了一些样本数据,完整版数据仍需邮件联系apolloscape.auto@gmail.com,全部数据笔者正在申请

image-20240621202957735

8、KITTI (2013):

优点:

  • 经典数据集:在自动驾驶领域广泛使用,数据格式标准化。
  • 易于获取和使用:数据集公开,易于下载和使用。

缺点:

  • 数据更新不频繁:数据集较老,部分数据不再符合当前技术水平。
  • 场景较为简单:主要集中在城市和高速公路,复杂场景较少。

适用场景:

  • 适用于入门级的自动驾驶研究和基准测试,特别是计算机视觉和深度学习算法的开发。
1、轨迹检测

image-20240621204047681

image-20240621204210321

2、数据集下载

https://www.cvlibs.net/datasets/kitti/eval_tracking.php

image-20240621204405136

image-20240621204503630

9、NGSIM (2006):

优点:

  • 交通流数据:专注于交通流和车流数据,适合交通流分析和交通管理研究。
  • 数据覆盖广:涵盖多种交通情况和时间段,数据丰富。

缺点:

  • 数据标注有限:标注信息相对简单,缺少复杂的物体检测和行为标注。
  • 场景局限性:数据集主要集中在高速公路和城市道路,场景较为单一。

适用场景:

  • 适合交通流分析、交通预测和交通管理研究,尤其是交通行为建模和流量预测。
1、数据下载

Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data

image-20240621204951963

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/空白诗007/article/detail/931202
推荐阅读
相关标签
  

闽ICP备14008679号