赞
踩
机器学习最重要的任务是根据已观察到的证据(例如训练样本)对感兴趣的未知变量(例如类别标
记)进行估计和推测。概率模型(probabilistic model)提供了一种描述框架,将描述任务归结为
计算变量的概率分布,在概率模型中,利用已知的变量推测未知变量的分布称为“推断
(inference)”,其核心在于基于可观测的变量推测出未知变量的条件分布。
生成式:计算联合分布声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。