赞
踩
贪心算法总结
一、算法思想
贪心法的基本思路:
从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。
该算法存在问题:
1. 不能保证求得的最后解是最佳的;
2. 不能用来求最大或最小解问题;
3. 只能求满足某些约束条件的可行解的范围。
实现该算法的过程:
从问题的某一初始解出发;
while 能朝给定总目标前进一步;
求出可行解的一个解元素;
由所有解元素组合成问题的一个可行解;
二、ACM做题情况
本专题,学习贪心算法,所给的18道题中只AC了14道(其中还有两题相同),除了几道水题以外,大部分题目是用到贪心算法来解决的,做了这套题,虽然感觉很困难,但想办法还是能AC几道题的,做过这些题目使我对贪心算法印象加深,没有以前感觉那么抽象,算是有进步吧,但还是不熟练,还需要加强训练。简短截说,还是在复习回顾一下,关于贪心算法的经典题目吧。
三、典型例题分类分析
【背包问题】
给定一个载重量为M的背包,考虑n个物品,其中第i个物品的重量 ,价值wi (1≤i≤n),要求把物品装满背包,且使背包内的物品价值最大。
有两类背包问题(根据物品是否可以分割),如果物品不可以分割,称为0—1背包问题(动态规划);如果物品可以分割,则称为背包问题(贪心算法)。
有3种方法来选取物品:
(1)当作0—1背包问题,用动态规划算法,获得最优值220;
(2)当作0—1背包问题,用贪心算法,按性价比从高到底顺序选取物品,获得最优值160。由于物品不可分割,剩下的空间白白浪费。
(3)当作背包问题,用贪心算法,按性价比从高到底的顺序选取物品,获得最优值240。由于物品可以分割,剩下的空间装入物品3的一部分,而获得了更好的性能。
struct bag{
int w; //物品的重量
int v; //物品的价值
double c; //性价比
}a[1001]; //存放物品的数组
排序因子(按性价比降序):
bool cmp(bag a, bag b){
return a.c >= b.c;
}
//形参n是物品的数量,c是背包的容量M,数组a是按物品的性价比降序排序
double knapsack(int n, bag a[], double c)
{
double cleft = c; //背包的剩余容量
int i = 0;
double b = 0; //获得的价值
//当背包还能完全装入物品i
while(i<n && a[i].w<cleft)
{
cleft -= a[i].w;
b += a[i].v;
i++;
}
//装满背包的剩余空间
if (i<n) b += 1.0*a[i].v*cleft/a[i].w;
return b;
}
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
如果要获得解向量,则需要在数据结构中加入物品编号:
struct bag{
int w;
int v;
double x;
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。