赞
踩
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客
本文网址:https://blog.csdn.net/HiWangWenBing/article/details/120597547
目录
- #环境准备
- import numpy as np # numpy数组库
- import math # 数学运算库
- import matplotlib.pyplot as plt # 画图库
-
- import torch # torch基础库
- import torch.nn as nn # torch神经网络库
-
- print("Hello World")
- print(torch.__version__)
- print(torch.cuda.is_available())
Hello World 1.8.0 False
这里不需要采用已有的开源数据集,只需要自己构建数据集即可。
- #2-1 准备数据集
- x_sample = np.linspace(0, 5, 64)
-
- noise = np.random.randn(64)
- y_sample = 2 * x_sample + 1 + noise
-
- y_line = 2 * x_sample + 1
-
- #可视化数据
- plt.scatter(x_sample, y_sample)
- plt.plot(x_sample, y_line,'red')
(1)把numpy一维数据转换成二维样本数据
(2)把numpy样本数据转换成torch样本数据
- # 2-2 对数据预处理
- print("Numpy原始样本的形状")
- print(x_sample.shape)
- print(y_sample.shape)
-
- # 把一维线性数据转换成二维样本数据,每个样本数据为一维
- print("\nNumpy训练样本的形状")
- x_numpy = x_sample.reshape(-1, 1).astype('float32')
- y_numpy = y_sample.reshape(-1, 1).astype('float32')
- print(x_numpy.shape)
- print(y_numpy.shape)
-
-
- # numpy样本数据转换成pytorch样本数据
- print("\ntorch训练样本的形状")
- x_train = torch.from_numpy(x_numpy)
- y_train = torch.from_numpy(y_numpy)
-
- print(x_train.shape)
- print(y_train.shape)
-
- plt.scatter(x_train, y_train)

Numpy原始样本的形状 (64,) (64,) Numpy训练样本的形状 (64, 1) (64, 1) torch训练样本的形状 torch.Size([64, 1]) torch.Size([64, 1])
Out[3]:
<matplotlib.collections.PathCollection at 0x1fdc56524f0>
这里的神经网络模型是单输入(size=1)、单输出(size=1)、无激活函数的线性神经元。
- # 2-3 定义网络模型
- # in_features: 输入数据的size = 1
- # out_features: 输处数据的size = 1
- # bias = True: 打开偏置参数B
- print("定义并初始化模型")
- model = nn.Linear(in_features=1, out_features=1)
- print(model)
-
- print("\n获取W,B参数的初始化值(随机产生)")
- w,b = model.parameters()
- print(w)
- print(b)
定义并初始化模型 Linear(in_features=1, out_features=1, bias=True) 获取W,B参数的初始化值(随机产生) Parameter containing: tensor([[-0.3860]], requires_grad=True) Parameter containing: tensor([-0.7404], requires_grad=True)
备注:
神经网络中w,b参数的初始值是随机初始,每次调用nn.Linear创建神经网络,W, B参数都不一样。
- # 2-4 定义网络预测输出
- y_pred = model.forward(x_train)
- print(y_pred.shape)
torch.Size([64, 1])
备注:输出是64个样本的一维数据
这里采用的MSE loss函数
- # 3-1 定义loss函数:
- # loss_fn= MSE loss
- loss_fn = nn.MSELoss()
- print(loss_fn)
MSELoss()
- # 3-2 定义优化器
- Learning_rate = 0.01 #学习率
-
- # optimizer = SGD: 基本梯度下降法
- # parameters:指明要优化的参数列表
- # lr:指明学习率
- optimizer = torch.optim.SGD(model.parameters(), lr = Learning_rate)
- print(optimizer)
SGD ( Parameter Group 0 dampening: 0 lr: 0.01 momentum: 0 nesterov: False weight_decay: 0 )
备注:优化器需要指明优化的参数列表和学习率
- # 3-3 模型训练
- # 定义迭代次数
- epochs = 500
-
- loss_history = [] #训练过程中的loss数据
- w_history = [] #训练过程中的w参数值
- b_history = [] #训练过程中的b参数值
-
- for i in range(0, epochs):
-
- #(1) 前向计算
- y_pred = model(x_train)
-
- #(2) 计算loss
- loss = loss_fn(y_pred, y_train)
-
- #(3) 反向求导
- loss.backward()
-
- #(4) 反向迭代
- optimizer.step()
-
- #(5) 复位优化器的梯度
- optimizer.zero_grad()
-
- w, b = model.parameters()
- loss_history.append(loss.item())
- w_history.append(w.item())
- b_history.append(b.item())
-
- if(i % 100 == 0):
- print('epoch {} loss {:.4f}'.format(i, loss.item()))
-
- print("\n迭代完成")
- w, b = model.parameters() #parameters()返回的是一个迭代器指向的对象
- print("\n训练后w参数值:", w, w.item())
- print("\n训练后b参数值:", b, b.item())
- print("\n最小损失数值 :", loss, loss.item())
- print(len(loss_history))
- print(len(w_history))
- print(len(b_history))

epoch 0 loss 42.0689 epoch 100 loss 1.0441 epoch 200 loss 1.0440 epoch 300 loss 1.0439 epoch 400 loss 1.0439 迭代完成 训练后w参数值: Parameter containing: tensor([[1.8530]], requires_grad=True) 1.8529784679412842 训练后b参数值: Parameter containing: tensor([1.2702], requires_grad=True) 1.2701895236968994 最小损失数值 : tensor(1.0439, grad_fn=<MseLossBackward>) 1.0438624620437622 500 500 500
NA
- # 3-4 可视化模型数据
- #model返回的是总tensor,包含grad_fn,用data提取出的tensor是纯tensor
- y_pred = model.forward(x_train).data.numpy().squeeze()
- print(x_train.shape)
- print(y_pred.shape)
- print(y_line.shape)
-
- plt.scatter(x_train, y_train, label='SampleLabel')
- plt.plot(x_train, y_pred, label='Predicted')
- plt.plot(x_train, y_line, label='Line')
-
- plt.legend()
- plt.show()
torch.Size([64, 1]) (64,) (64,)
- #显示loss的历史数据
- plt.plot(loss_history, "r+")
- plt.title("loss value")
- #显示w参数的历史数据
- plt.plot(w_history, "r+")
- plt.title("w value")
- #显示b参数的历史数据
- plt.plot(b_history, "r+")
- plt.title("b value")
NA
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客
本文网址:https://blog.csdn.net/HiWangWenBing/article/details/120597547
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。