当前位置:   article > 正文

基于电影评分和用户属性的协同过滤混合推荐算法实现(附源代码)_混合式推荐算法源码

混合式推荐算法源码

基于用户评分和用户属性的协同过滤混合推荐算法实现

一、基于用户评分的协同过滤推荐算法

实现步骤:

1、构建用户-电影评分矩阵(movielens数据集),如下图:

2、计算目标用户与其他用户的相似度,如下图:

3、获取KNN个最近邻,如下图:

4、计算推荐结果,如下图:

二、基于用户评分的协同过滤推荐算法

实现步骤:

1、构建用户-性别矩阵(movielens数据集),用户属性可以是多个,如下图:

2、计算目标用户与其他用户的相似度,如下图:

3、获取KNN个最近邻,如下图:

4、获取推荐结果。查询目标用户中没有评分的,同时最近邻中有评分的电影,并付默认值。

三、加权混合推荐

    首先将两种算法的预测值*加权并相加,然后将加权后的预测值进行冒泡排序,最后根据预测值大小得到前N个推荐电影。

 

 

 

项目源代码:https://download.csdn.net/download/u011291472/11967745

 

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/123572
推荐阅读
相关标签
  

闽ICP备14008679号