赞
踩
正文共529个字,1张图,预计阅读时间2分钟。
理解多维矩阵的"求和"、"平均"操作确实太恶心了,numpy提供的函数里还有一堆参数,搞得晕头转向的,这里做个笔记,提醒一下自己, 下面是例程:
import numpy as np X = np.array([[1, 2], [4, 5], [7, 8]])
print np.mean(X, axis=0, keepdims=True)
print np.mean(X, axis=1, keepdims=True)
结果是分别是:
[[ 1.5] [[ 4. 5.]] [ 4.5] [ 7.5]]
我个人比较raw的认识就是,axis=0,那么输出矩阵是1行,求每一列的平均(按照每一行去求平均);axis=1,输出矩阵是1列,求每一行的平均(按照每一列去求平均)。还可以这么理解,axis是几,那就表明哪一维度被压缩成1。
再举个更复杂点的例子,比如我们输入为batch = [128, 28, 28],可以理解为batch=128,图片大小为28×28像素,我们相求这128个图片的均值,应该这么写:
m = np.mean(batch, axis=0)
输出结果m的shape为(28,28),就是这128个图片在每一个像素点平均值。
原文链接:https://www.jianshu.com/p/f9e3fd264932
查阅更为简洁方便的分类文章以及最新的课程、产品信息,请移步至全新呈现的“LeadAI学院官网”:
www.leadai.org
请关注人工智能LeadAI公众号,查看更多专业文章
大家都在看
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。