当前位置:   article > 正文

【海贼王的数据航海:利用数据结构成为数据海洋的霸主】时间复杂度 | 空间复杂度

【海贼王的数据航海:利用数据结构成为数据海洋的霸主】时间复杂度 | 空间复杂度

目录

1 -> 算法效率

1.1 -> 如何衡量一个算法的好坏?

1.2 -> 算法的复杂度

2 -> 时间复杂度

2.1 -> 时间复杂度的概念

2.2 -> 大O的渐进表示法

2.3 -> 常见时间复杂度计算

3 -> 空间复杂度

4 -> 常见复杂度对比


1 -> 算法效率

1.1 -> 如何衡量一个算法的好坏?

对于以下斐波那契数列:

  1. #define _CRT_SECURE_NO_WARNINGS
  2. #include <iostream>
  3. using namespace std;
  4. long long fib(int N)
  5. {
  6. if (N < 3)
  7. return 1;
  8. return fib(N - 1) + fib(N - 2);
  9. }
  10. int main()
  11. {
  12. return 0;
  13. }

用递归实现斐波那契数列,看上去代码十分简洁,但简洁一定就是好算法吗?如何衡量一个算法的好坏?

1.2 -> 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机存储容量很小。所以对于空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要特别关注一个算法的空间复杂度。

2 -> 时间复杂度

2.1 -> 时间复杂度的概念

定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上来讲,是不能算出来的,只有把程序放在机器上跑起来才能知道。但是我们需要每个算法都上机测试吗?固然可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方法。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

  1. #define _CRT_SECURE_NO_WARNINGS
  2. #include <iostream>
  3. using namespace std;
  4. // 请计算一下Func1++count语句总共执行了多少次?
  5. void Func1(int N)
  6. {
  7. int count = 0;
  8. for (int i = 0; i < N; ++i)
  9. for (int j = 0; j < N; ++j)
  10. ++count;
  11. for (int k = 0; k < 2 * N; ++k)
  12. ++count;
  13. int M = 10;
  14. while (M--)
  15. ++count;
  16. cout << count << endl;
  17. }
  18. int main()
  19. {
  20. return 0;
  21. }

Func1执行的基本操作数:

F(N) = N^{2} + 2N + 10

-> N = 10 F(N) = 130
-> N = 100 F(N) = 10210
-> N = 1000 F(N) = 1002010

实际我们在计算时间复杂度时,并不一定要计算精确的执行次数,只需要大概执行次数,所以我们使用大O的渐进表示法。

2.2 -> 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

  1. 在常数1取代运行时间中的所有加法常数;
  2. 在修改后的运行次数函数中,只保留最高阶项;
  3. 如果最高阶项存在且不为1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法后,Func1的时间复杂度为:

O(N^{2})

-> N = 10 F(N) = 100

-> N = 100 F(N) = 10000
-> N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。 

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最好情况:任意输入规模的最小运行次数(下界)
  • 平均情况:任意输入规模的期望运行次数
  • 最坏情况:任意输入规模的最大运行次数(上界)

例如:在一个长度为N的数组中搜索一个数据x

  • 最好情况:1次找到
  • 平均情况:N / 2次找到
  • 最坏情况:N次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中的搜索数据时间复杂度为:

O(N)

2.3 -> 常见时间复杂度计算

实例1:

  1. // 计算Func2的时间复杂度?
  2. void Func2(int N)
  3. {
  4. int count = 0;
  5. for (int k = 0; k < 2 * N; ++k)
  6. ++count;
  7. int M = 10;
  8. while (M--)
  9. ++count;
  10. cout << count << endl;
  11. }

实例2:

  1. // 计算Func3的时间复杂度?
  2. void Func3(int N, int M)
  3. {
  4. int count = 0;
  5. for (int k = 0; k < M; ++k)
  6. ++count;
  7. for (int k = 0; k < N; ++k)
  8. ++count;
  9. cout << count << endl;
  10. }

实例3:

  1. // 计算Func4的时间复杂度?
  2. void Func4(int N)
  3. {
  4. int count = 0;
  5. for (int k = 0; k < 100; ++k)
  6. ++count;
  7. cout << count << endl;
  8. }

实例4:

  1. // 计算strchr的时间复杂度?
  2. const char* strchr(const char* str, int character);

实例5:

  1. // 计算BubbleSort的时间复杂度?
  2. void BubbleSort(int* a, int n)
  3. {
  4. assert(a);
  5. for (size_t end = n; end > 0; --end)
  6. {
  7. int exchange = 0;
  8. for (size_t i = 1; i < end; ++i)
  9. {
  10. if (a[i - 1] > a[i])
  11. {
  12. Swap(&a[i - 1], &a[i]);
  13. exchange = 1;
  14. }
  15. }
  16. if (exchange == 0)
  17. break;
  18. }
  19. }

实例6:

  1. // 计算BinarySearch的时间复杂度?
  2. int BinarySearch(int* a, int n, int x)
  3. {
  4. assert(a);
  5. int begin = 0;
  6. int end = n - 1;
  7. // [begin, end]:begin和end是左闭右闭区间,因此有=
  8. while (begin <= end)
  9. {
  10. int mid = begin + ((end - begin) >> 1);
  11. if (a[mid] < x)
  12. begin = mid + 1;
  13. else if (a[mid] > x)
  14. end = mid - 1;
  15. else
  16. return mid;
  17. }
  18. return -1;
  19. }

实例7:

  1. // 计算阶乘递归Fac的时间复杂度?
  2. long long Fac(size_t N)
  3. {
  4. if (0 == N)
  5. return 1;
  6. return Fac(N - 1) * N;
  7. }

实例8:

  1. // 计算斐波那契递归fib的时间复杂度?
  2. long long fib(size_t N)
  3. {
  4. if (N < 3)
  5. return 1;
  6. return fib(N - 1) + fib(N - 2);
  7. }

答案及分析:

1. 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)
2. 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
3. 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)
4. 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
5. 实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)
6. 实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。
7. 实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。
8. 实例8通过计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)。

3 -> 空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度。

空间复杂度不是程序占用了多少byte的空间,因为意义不大,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本与时间复杂度类似,也是使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时显式申请的额外空间来确定。

实例1:

  1. // 计算BubbleSort的空间复杂度?
  2. void BubbleSort(int* a, int n)
  3. {
  4. assert(a);
  5. for (size_t end = n; end > 0; --end)
  6. {
  7. int exchange = 0;
  8. for (size_t i = 1; i < end; ++i)
  9. {
  10. if (a[i - 1] > a[i])
  11. {
  12. Swap(&a[i - 1], &a[i]);
  13. exchange = 1;
  14. }
  15. }
  16. if (exchange == 0)
  17. break;
  18. }
  19. }

实例2:

  1. // 计算fib的空间复杂度?
  2. // 返回斐波那契数列的前n项
  3. long long* fib(size_t n)
  4. {
  5. if (n == 0)
  6. return NULL;
  7. long long* arr = (long long*)malloc((n + 1) * sizeof(long long));
  8. arr[0] = 0;
  9. arr[1] = 1;
  10. for (int i = 2; i <= n; ++i)
  11. arr[i] = arr[i - 1] + arr[i - 2];
  12. return arr;
  13. }

实例3:

  1. // 计算阶乘递归Fac的空间复杂度?
  2. long long Fac(size_t N)
  3. {
  4. if (N == 0)
  5. return 1;
  6. return Fac(N - 1) * N;
  7. }

答案及分析:

1. 实例1使用了常数个额外空间,所以空间复杂度为 O(1)
2. 实例2动态开辟了N个空间,空间复杂度为 O(N)
3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

4 -> 常见复杂度对比

一般算法的常见复杂度:

5201314O(1)常数阶
3n + 4O(n)线性阶
3n ^ 2 + 4n + 5O(n ^ 2)平方阶
3log(2)n + 4O(logn)对数阶
2n + 3nlog(2)n + 4O(nlogn)nlogn阶
n ^ 3 + n ^ 2 + 3n + 4O(n ^ 3)立方阶
2 ^ nO(2 ^ n)指数阶


感谢大佬们支持!!!

互三啦!!!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/172527
推荐阅读
相关标签
  

闽ICP备14008679号