当前位置:   article > 正文

数学建模常用模型23:马尔可夫预测方法_马尔科夫预测

马尔科夫预测

给大家安利一款朋友开发的自研国产数据分析基础工具,一键式自动分析,自动生成分析模板,5分钟掌握主流61个统计类数学模型(几乎涵盖SPSS绝大部分功能),以及23个有监督机器学习(包括随机森林,SVM,XGBoost等)

PS:巨方便简单上手,貌似现在是免费

官网:www.mpaidata.com   mpai数据科学平台

 

马尔可夫预测的性质及运用

对事件的全面预测,不仅要能够指出事件发生的各种可能结果,而且还必须给出每一种结果出现的概率,说明被预测的事件在预测期内出现每一种结果的可能性程度。这就是关于事件发生的概率预测。

马尔可夫(Markov)预测法,就是一种关于事件发生的概率预测方法。它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。马尔可夫预测法是地理预测研究中重要的预测方法之一。

基本概念

(一)状态、状态转移过程与马尔可夫过程

1.状态  在马尔可夫预测中,“状态”是一个重要的术语。所谓状态,就是指某一事件在某个时刻(或时期)出现的某种结果。一般而言,随着所研究的事件及其预测的目标不同,状态可以有不同的划分方式。譬如,在商品销售预测中,有“畅销”、“一般”、“滞销”等状态;在农业收成预测中,有“丰收”、“平收”、“欠收”等状态;在人口构成预测中,有“婴儿”、“儿童”、“少年”、“青年”、“中年”、“老年”等状态;等等。

2.状态转移过程  在事件的发展过程中,从一种状态转变为另一种状态,就称为状态转移。事件的发展,随着时间的变化而变化所作的状态转移,或者说状态转移与时间的关系,就称为状态转移过程,简称过程。

 

(二)状态转移概率与状态转移概率矩阵

1.状态转移概率  在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。根据条件概率的定义,由状态Ei转为状态Ej的状态转移概率P(Ei→Ej)就是条件概率P(Ej/Ei),即

                             P(EiEj)=P(Ej/Ei)=Pij

2.状态转移概率矩阵  假定某一种被预测的事件有E1,E2,…,En,共n个可能的状态。记Pij为从状态Ei转为状态Ej的状态转移概率,作矩阵

                         

则称P为状态转移概率矩阵。

如果被预测的某一事件目前处于状态Ei,那么在下一个时刻,它可能由状态Ei转向E1,E2,…Ei…En中的任一个状态。所以Pij满足条件: 

                         

一般地,我们将满足上面条件的任何矩阵都称为随机矩阵,或概率矩阵。不难证明,如果P为概率矩阵,则对任何数m>0,矩阵Pm都是概率矩阵。

如果P为概率矩阵,而且存在整数m>0,使得概率矩阵Pm中诸元素皆非零,则称P为标准概率矩阵。可以证明,如果P为标准概率矩阵,则存在非零向量a=[x1,x2,,xn],而且满足\[0xi1andi=1nxi=1\],使得:

                              ap=a 

这样的向量α称为平衡向量,或终极向量。

3.状态转移概率矩阵的计算  计算状态转移概率矩阵P,就是要求每个状态转移到其它任何一个状态的转移概率Pij(i,j=1,2,…,n)。为了求出每一个Pij,我们采用频率近似概率的思想来加以计算。

 

举例如下:

考虑某地区农业收成变化的三个状态,即“丰收”、“平收”和“欠收”。记E1为“丰收”状态,E2为“平收”状态,E3为“欠收”状态。下表给出了该地区1950—1989年期间农业收成的情况以及状态变化:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/320309?site
推荐阅读
相关标签
  

闽ICP备14008679号