赞
踩
以下内容来自此处.
在本文中我们将首先给出若干结论, 再给出切诺夫界及其证明.
设 X X X为一随机变量, a ∈ R a\in \mathbb{R} a∈R, 则对于任意 s > 0 s>0 s>0, 由马尔科夫不等式有公式1:
Pr ( X ≥ a ) = Pr ( e s X ≥ e s a ) ≤ E ( e s X ) e s a \Pr(X\ge a) = \Pr(e^{sX}\ge e^{sa}) \le \frac{E(e^{sX})}{e^{sa}} Pr(X≥a)=Pr(esX≥esa)≤esaE(esX)
类似的, 对于任意 s > 0 s>0 s>0, 由马尔科夫不等式有公式2:
Pr ( X ≤ a ) = Pr ( e − s X ≥ e − s a ) ≤ E ( e − s X ) e − s a \Pr(X\le a) = \Pr(e^{-sX} \ge e^{-sa}) \le \frac{E(e^{-sX})}{e^{-sa}} Pr(X≤a)=Pr(e−sX≥e−sa)≤e−saE(e−sX)
令 M X ( s ) = E ( e s X ) M_X(s) = E(e^{sX}) MX(s)=E(esX), 则由泰勒展开得
M X ( s ) = E ( 1 + s X + 1 2 s 2 X 2 + 1 3 ! s 3 X 3 + ⋯ ) = ∑ i = 0 ∞ 1 i ! s i E ( X i ) M_X(s) = E(1 + sX + \frac{1}{2}s^2X^2 + \frac{1}{3!}s^3X^3 + \cdots) = \sum_{i = 0}^\infty\frac{1}{i!}s^iE(X^i) MX(s)=E(1+sX+21s2X2+3!1s3X3+⋯)=i=0∑∞i!1siE(Xi)
引理1. 令 X 1 , ⋯ , X n X_1, \cdots, X_n X1,⋯,Xn为独立随机向量, X = ∑ i = 1 n X i X=\sum_{i=1}^nX_i X=∑i=1nXi, 则
M X ( s ) = ∏ i = 1 n M X i ( s ) . M_X(s) = \prod_{i=1}^nM_{X_i}(s). MX(s)=i=1∏nMX
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。