当前位置:   article > 正文

【DOA三维路径规划】野狗算法无人机避障三维航迹规划【含Matlab源码 3618期】_机器狗避障算法

机器狗避障算法

在这里插入图片描述

⛄一、野狗算法无人机避障三维航迹规划简介

1 无人机航迹规划问题的数学模型
建立三维航迹规划问题的数学模型时, 不但考虑无人机基本约束, 还考虑复杂的飞行环境, 包括山体地形和雷暴威胁区。

1.1 无人机基本约束
规划的无人机三维航迹, 通常需要满足一些基本约束, 包括最大转弯角、最大爬升角或下滑角、最小航迹段长度、最低和最高飞行高度, 以及最大航迹长度等约束。其中, 最大转弯角约束, 是指无人机只能在水平面内小于或等于指定的最大转弯角内转弯;最大爬升角或下滑角约束, 是指无人机只能在垂直平面内小于或等于指定的最大爬升角或下滑角内爬升或下滑;最小航迹段长度约束, 要求无人机改变飞行姿态之前, 按目前的航迹方向飞行的最短航程;最低和最高飞行高度约束, 要求无人机在指定的飞行高度区间飞行;最大航迹长度约束, 是指无人机的航迹长度小于或等于指定的阈值。

记q (x, y, z, θ, ψ) 为无人机的飞行位置与姿态, 其中, (x, y, z) 为无人机的位置, θ为无人机的水平转弯角, ψ为无人机的竖直爬升角或下滑角, 进而建立上述基本约束的数学表达式。
在这里插入图片描述
1.2 飞行环境障碍物和威胁区建模
在飞行环境中, 高耸的山体近似采用圆锥体等效表示, 用以e为底的自然指数图形生成, 那么, 山体地形可以通过多个位置不同的圆锥体叠加而成。若将参考海拔基准高度设置为xOy平面, 记 (x, y, z) 为山体地形中的点, 那么
在这里插入图片描述
式中:N为山体个数;xk0和yk0为第k座山体中心对称轴的横坐标和纵坐标;hk为第k座山体的最大高度;xki和yki为第k座山体的横向斜度和纵向斜度。

在飞行环境中, 山体附近通常存在雷暴等极端气象, 本文视为飞行威胁区, 并通过球体近似等效表示, 且记第k座山体附近飞行威胁区的球心坐标为 (xks0, yks0, zks0) , 半径为rk。

1.3 目标函数及航迹表示
在本文中, 执行任务的某型无人机, 其航迹规划的目标函数是生成一条由起始点到目标点的无碰撞可行航迹。采用q (x, y, z, θ, ψ) 表示无人机在飞行空域中某特定位置的特定姿态, 那么 (x, y, z) 则表示无人机所在航迹点, θ表示无人机的水平转弯角, ψ表示无人机的竖直爬升角或下滑角。采用r (q) 表示由起始点qinitial到目标点qgoal的无碰撞可行航迹, 那么航迹规划的过程可以写成如下形式:
在这里插入图片描述

2 野狗算法
野狗优化算法(Dingo Optimization Algorithm,DOA)是于2021年提出的一种新型智能优化算法,该算法是根据澳大利亚野狗的社交行为设计的,具有寻优能力强,收敛速度快等特点。
DOA算法的灵感来源于野狗的狩猎策略,即迫害攻击、分组策略和清扫行为。

2.1 种群初始化
野狗种群在搜索边界内随机初始化。

2.2 策略一:群体攻击
捕食者通常使用高度智能的狩猎技术,野狗通常单独捕食小猎物,如兔子,但当捕食大猎物,如袋鼠时,它们会成群结队。野狗能找到猎物的位置并将其包围。

2.3 策略二:迫害攻击
野狗通常捕猎小猎物,直到单独捕获为止。

2.4 策略三:清扫
清扫行为为被定义为当野狗在它们的栖息地随意行走时找到腐肉吃的行为。

2.5 策略四:野狗的存活率

⛄二、部分源代码

%% 三维地图-无人机寻路
% 3D map - aircraft pathfinding
%% 这是使用原始算法的直接求解结果,添加专用于本问题的更新方式可以进一步提高精度
% This is the direct result of using the original algorithm,
% adding some specific update methods to this problem can further improve the accuracy
clc;
clear;
close all;
warning off

%% 载入数据
data.S=[1,950,12]; %起点位置
data.E=[950,1,1]; %终点点位置
data.Obstacle=xlsread(‘data.xls’);
data.numObstacles=length(data.Obstacle(:,1));
data.mapSize=[1000,1000,20]; %10m 地图尺寸
data.unit=[50,50,1]; %地图精度
data.S0=ceil(data.S./data.unit);
data.E0=ceil(data.E./data.unit);
data.mapSize0=data.mapSize./data.unit;
data.map=zeros(data.mapSize0);
figure
plot3(data.S(:,1),data.S(:,2),data.S(:,3),‘o’,‘LineWidth’,1,…
‘MarkerEdgeColor’,‘g’,…
‘MarkerFaceColor’,‘g’,…
‘MarkerSize’,8)
hold on
plot3(data.E(:,1),data.E(:,2),data.E(:,3),‘h’,‘LineWidth’,1,…
‘MarkerEdgeColor’,‘g’,…
‘MarkerFaceColor’,‘g’,…
‘MarkerSize’,8)
for i=1:data.numObstacles
x=1+data.Obstacle(i,1);
y=1+data.Obstacle(i,2);
z=1+data.Obstacle(i,3);
long=data.Obstacle(i,4);
wide=data.Obstacle(i,5);
pretty=data.Obstacle(i,6);
[V,F] = DrawCuboid(long, wide, pretty, x,y,z);
x0=ceil(x/data.unit(1));
y0=ceil(y/data.unit(2));
z0=ceil(z/data.unit(3));
long0=ceil(long/data.unit(1));
wide0=ceil(wide/data.unit(2));
pretty0=ceil(pretty/data.unit(3));
data.map(x0:x0+long0,y0:y0+wide0,z0:z0+pretty0)=1;
end
legend(‘起点’,‘终点’)
title(‘三维地形地图’)
grid on
axis equal
%%
% index=find(data.map==1);
% [p1,p2,p3] = ind2sub(size(data.map), index);
% figure
% plot3(data.S0(:,1),data.S0(:,2),data.S0(:,3),‘o’,‘LineWidth’,1,…
% ‘MarkerEdgeColor’,‘g’,…
% ‘MarkerFaceColor’,‘g’,…
% ‘MarkerSize’,8)
% hold on
% plot3(data.E0(:,1),data.E0(:,2),data.E0(:,3),‘h’,‘LineWidth’,1,…
% ‘MarkerEdgeColor’,‘g’,…
% ‘MarkerFaceColor’,‘g’,…
% ‘MarkerSize’,8)
% plot3(p1,p2,p3,‘.’,‘LineWidth’,1,…
% ‘MarkerEdgeColor’,‘k’,…
% ‘MarkerFaceColor’,‘g’,…
% ‘MarkerSize’,10)
% legend(‘起点’,‘终点’)
% title(‘三维地形地图’)
% grid on
% axis equal
% xlabel(‘x(km)’)
% ylabel(‘y(km)’)
% zlabel(‘z(km)’)
%% 生成可移动方向
temp=[1,0,-1];
direction=[];
for i=1:3
for j=1:3
for k=1:3
direction=[direction;temp(i),temp(j),temp(k)];
end
end
end
position=find(direction(:,1)==0 & direction(:,2)==0 & direction(:,3)==0);
direction(position,:)=[];
data.direction=direction;

%% 算法参数设置 Parameters
% 基本参数
numAgent=20; %种群个体数 size of population,可自行修改
Max_iter=20; %最大迭代次数 maximum number of interation,可自行修改
lb=0;%下限,可自行修改
ub=1;%上限,可自行修改
dim=prod(data.mapSize0); % 优化变量个数
fobj=@(x) aimFcn(x,data);%目标函数,用以优化

%% 使用优化算法求解

Optimal_results{2,index}=recording;%迭代曲线
Optimal_results{3,index}=bestY;%最佳函数值
Optimal_results{4,index}=bestX; %最佳变量值
Optimal_results{5,index}=result; %优化结果
Optimal_results{6,index}=toc; %运行时间
index = index +1;

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]田疆,李二超.用于无人机三维航迹规划改进连接型快速扩展随机树算法[J].航空工程进展. 2018,9(04)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/414807
推荐阅读
相关标签
  

闽ICP备14008679号