当前位置:   article > 正文

DPO讲解_ppo dpo

ppo dpo

PPO算法的pipeline冗长,涉及模型多,资源消耗大,且训练极其不稳定。DPO是斯坦福团队基于PPO推导出的优化算法,去掉了RW训练和RL环节,只需要加载一个推理模型和一个训练模型,直接在偏好数据上进行训练即可:

DPO

损失函数如下:
L D P O ( π θ ; π r e f ) = − E ( x , y w , y l ) ∼ D [ log ⁡ σ ( β log ⁡ π θ ( y w ∣ x ) π r e f ( y w ∣ x ) − β log ⁡ π θ ( y l ∣ x ) π r e f ( y l ∣ x ) ) ] \mathcal{L}_{\mathrm{DPO}}\left(\pi_\theta ; \pi_{\mathrm{ref}}\right)=-\mathbb{E}_{\left(x, y_w, y_l\right) \sim \mathcal{D}}\left[\log \sigma\left(\beta \log \frac{\pi_\theta\left(y_w \mid x\right)}{\pi_{\mathrm{ref}}\left(y_w \mid x\right)}-\beta \log \frac{\pi_\theta\left(y_l \mid x\right)}{\pi_{\mathrm{ref}}\left(y_l \mid x\right)}\right)\right] LDPO(πθ;πref)=E(x,yw,yl)D[logσ(βlogπref(ywx)πθ(ywx)βlogπref(ylx)πθ(ylx))]

DPO在理解难度、实现难度和资源占用都非常友好,想看具体的公式推导见:

[论文笔记]DPO:Direct Preference Optimization: Your Language Model is Secretly a Reward Model


参考

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/558610
推荐阅读
相关标签
  

闽ICP备14008679号