赞
踩
引用: Betker J, Goh G, Jing L, et al. Improving image generation with better captions[J]. Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2023, 2(3): 8.
论文链接: https://arxiv.org/abs/2212.09748
论文展示了通过在高度描述性的生成图像captions上训练,可以显著提高文本到图像模型的提示跟随能力。现有的文本到图像模型在遵循详细图像描述方面存在困难,经常忽略提示中的单词或混淆提示的含义。作者假设这个问题源于训练数据集中图像标题的噪声和不准确性。通过训练一个定制的图像captions生成器并用它来重新标注训练数据集来解决这个问题。然后,训练了几个文本到图像模型,并发现在这些合成captions上训练可靠地提高了提示跟随能力。最后,使用这些发现构建了DALLE 3:一个新的文本到图像生成系统,并在设计用来衡量提示跟随、连贯性和美学的评估中测试了其性能,发现它与竞争对手相比具有优势。
论文提出的文本到图像模型是在由大量配对(t,i)组成的数据集上训练的,其中i是图像,t是描述该图像的文本。在大规模数据集中,t通常来源于人类作者,他们专注于对图像主题的简单描述,而忽略了图像中描绘的背景细节或常识关系。t中通常省略的重要细节可能包括:
糟糕的是,在互联网上发现的captions往往根本不正确;描述图像的切向相关细节。例如,在通常用于为图像制作captions的文本中,通常会发现广告或表情包。作者假设所有这些缺点都可以通过综合生成的 captions来解决。
图像字幕与预测文本的传统语言模型非常相似。语言模型首先使用标记器将文本字符串分解为离散的标记。一旦以这种方式分解,语料库的文本部分就可以表示为一个序列,t=[t1,t2,…,tn]。然后,可以通过最大化以下可能性函数,在文本上建立一个语言模型:
其中,θ是要优化的captioner的参数。要将此语言模型转换为captioner,只需要对图像进行调整即可。这里的挑战是图像是由成千上万的像素值组成的。对目前的神经网络来说,对所有这些信息进行调节是非常低效的,所以需要一个压缩的表示空间。方便的是,CLIP提供了这一点。因此,给定预先训练的CLIP图像嵌入函数F(i),扩展语言模型的优化目标如下:
为了改进图像生成数据集中的captions,希望使caption生成器产生有利于学习文本到图像模型的图像描述。在第一次尝试中,构建了一个小的caption数据集,只描述图像的主要主题。然后继续在这个数据集上训练captioner。该过程引起的θ更新可以导致模型偏向于描述图像的主要主题。将此微调生成的captions称为"short synthetic captions"。
然后,第二次重复这个过程,创建一个由长的、高度描述性的captions组成的数据集,描述微调数据集中每个图像的内容。这些captions不仅描述了图像的主要主题,还描述了图像周围的环境、背景、图像中的文本、风格、颜色等。再次在此数据集上captioner。将此captioner生成的captions称为“描descriptive synthetic captions”。图3显示了基本事实、简短合成和描述性合成captions的示例。
构建完成后,将图像captioner微调应用于文本到图像数据集中的每个图像,从而生成一组合成字幕,用于后续实验。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。