赞
踩
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
service mysql stop
service mysql start
进入mysql shell
sudo mysql 或 sudo mysql –u root –p 命令,回车后会提示输入密码,前者输入当前系统用户密码,后者是输入 mysql root 用户密码一般为空,回车进入 mysql 命令行。这里 root是 mysql 安装时默认创建的用户,不是 Ubuntu 系统的 root 用户。
新建一个数据库用来保存hive元数据(hive_metadata_zqc)
刷新mysql系统权限关系表
exit 退出
2. 配置hive
下载mysql jdbc包https://dev.mysql.com/downloads/connector/j/ ;
解压jdbc包后,将其中的jar包拷贝至hive安装目录下lib文件夹中
进入/usr/local/hive/conf 目录。将hive-default.xml.template 重命名为hive-default.xml 保存着各个配置参数的默认值。
新建一个hive-site.xml 配置文件,并添加如下内容,该文件内容会覆盖原默认值
箭头标记处说明:hive_metadata_zqc 是前面步骤 MySQL 里新建的 database、hive_zqc和 hive 是连接数据库的用户名以及密码;
<configuration> <property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://localhost:3306/hive_metadata_zqc?createDatabaseIfNotExist=true</value> <description>JDBC connect string for a JDBC metastore</description> </property> <property> <name>javax.jdo.option.ConnectionDriverName</name> <value>com.mysql.jdbc.Driver</value> <description>Driver class name for a JDBC metastore</description> </property> <property> <name>javax.jdo.option.ConnectionUserName</name> <value>hive_zqc</value> <description>username to use against metastore database</description> </property> <property> <name>javax.jdo.option.ConnectionPassword</name> <value>hive</value> <description>password to use against metastore database</description> </property> </configuration>
初始化元数据库,不然有可能会报错。
可能出现错误
原因:com.google.common.base.Preconditions.checkArgument 这是因为 hive 内依赖的 guava.jar 和hadoop内的版本不一致造成的。
解决方法:查看hadoop安装目录下 share/hadoop/common/lib 内 guava.jar 版本,查看 hive安装目录下lib内guava.jar的版本,如果两者不一致,删除版本低的,并拷贝高版本的。
两个版本一样了
在进行一次初始化元数据库
成功了!
4. 启动Hive
启动hive 之前,请先启动hadoop集群(start-dfs.sh)和确保MySQL服务正常运行。“hive”命令启动 hive。
启动hadoop集群
启动mysql
启动hive
表1 student_zqc:
Name | Sex | Birth | Dept | Uid |
---|---|---|---|---|
Liuyi | F | 2002/11/26 | CS | 180301 |
Chener | F | 2001/6/11 | CS | 180302 |
Zhangsan | M | 2002/9/21 | CS | 180303 |
Lisi | F | 2001/1/26 | SE | 180201 |
表2 grade_zqc:
Uid | Course | Grade |
---|---|---|
180301 | Chinese | 90 |
180301 | Math | 58 |
180301 | English | 39 |
180302 | Chinese | 91 |
180302 | Math | 95 |
180302 | English | 75 |
180303 | Chinese | 60 |
180303 | Math | 58 |
180303 | English | 53 |
180201 | Chinese | 62 |
180201 | Math | 43 |
180201 | English | 74 |
新建一个数据库db_xxx,添加扩展参数:日期、学号、姓名;使用该数据库做后续操作;设置命令行显示当前使用的数据库,请保证后续操作都能显示。
创建的时候添加了日期,学号,姓名,以及存放路径
新建student_xxx分区表(分区字段Dept)和grade_xxx内部表,分别查看表结构和存储路径;(字段类型自定义)
在表student_zqc中添加两个分区Dept=’CS’和Dept=’SE’,从本地导入数据到student_xxx表的两个分区中,分别查看两个分区所有记录,查看表数据存储目录;
从文件中加载数据,load data
语法 :
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename
首先在本地主目录下创建数据文件 input.txt,并上传到 HDFS 中。
注意分隔符要跟你表设置一致。
从HDFS导入数据到grade_xxx表中,查看grade_xxx表所有记录,查看表数据存储目录;
本地创建表 input3.txt
上传到hdfs
加载到hive中
select sex,count(1) from student_zqc group by sex;
select uid,avg(grade) from grade_zqc group by uid;
例如CS系Chinese科目平均成绩在所有系的比例是1.06。
查看表分区
删除分区
删除表
删除库
退出
编写一个UDF,函数名UDFXxx,查询学生(输入字段:student_xxx.Birth)出生天数。给出定义和使用UDF的完整流程和截图。
添加包
import org.apache.hadoop.hive.ql.exec.UDF; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.joda.time.DateTime; import org.joda.time.format.DateTimeFormat; import org.joda.time.format.DateTimeFormatter; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.Date; public class UDFzqc extends UDF{ public final static DateTimeFormatter DEFAULT_DATE_FORMATTER = DateTimeFormat.forPattern("yyyy/MM/dd"); private Text result = new Text(); public Text evaluate(Text birthday) throws ParseException{ DateTime dateTime = null; try { dateTime = DateTime.parse(birthday.toString(), DEFAULT_DATE_FORMATTER); ![img](https://img-blog.csdnimg.cn/img_convert/a8807c1fbe3dd7a747b78689187b6cc8.png) ![img](https://img-blog.csdnimg.cn/img_convert/17faf05781ee3a499cb594766f88ed62.png) ![img](https://img-blog.csdnimg.cn/img_convert/3c9a5d8629d75650f5793eefba3a21f1.png) **既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!** **由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新** **[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)** ), DEFAULT_DATE_FORMATTER); [外链图片转存中...(img-uHn7KpGI-1715364604834)] [外链图片转存中...(img-vSLNwZPg-1715364604835)] [外链图片转存中...(img-iZvQeSqk-1715364604835)] **既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!** **由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新** **[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。